Skip to main content
Log in

Halo EFT calculation of charge form factor for two-neutron \({}^{6}\text {He}\) halo nucleus: two-body resonant P-wave interaction

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We take a new look at \(^{6}\text {He}\) halo nucleus and set up a halo effective field theory at low energies to calculate the charge form factor of \({}^{6}\text {He}\) system with resonant P-wave interaction. P-wave Lagrangian has been introduced and the charge form factor of \({}^{6}\text {He}\) halo nucleus has been obtained at Leading-Order. In this study, the mean-square charge radius of \({}^{6}\text {He}\) nucleus relative to \({}^{4}\text {He}\) core and the root-mean-square (r.m.s) charge radius of \({}^{6}\text {He}\) nucleus have been estimated as \(\langle r_{E}^{2}\rangle =1.408\; \text {fm}^{2}\) and \(\langle r_{E}^{2}\rangle _{{}^{6}He}^{\frac{1}{2}}=2.058 \;\text {fm}\), respectively. We have compared our results with the other available theoretical and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: In the tables data is referenced.]

References

  1. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    Article  ADS  Google Scholar 

  2. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  3. M. Rho, Phys. Rev. Lett 66, 1275 (1991)

    Article  ADS  Google Scholar 

  4. C. Ordóñez, U. van Kolck, Phys. Lett. B 291, 459 (1992)

    Article  ADS  Google Scholar 

  5. P.F. Bedaque, U. van Kolck, Ann. Rev. Nucl. Part. Sci 52, 339 (2002)

    Article  ADS  Google Scholar 

  6. S.R. Beane, P.F. Bedaque, W.C. Haxton, D.R. Phillips, M.J. Savage, At the Frontier of Particle Physics, 133–269 (World Scientific, Singapore, 2001)

    MATH  Google Scholar 

  7. Nuclear Physics with Effective Field Theory II, ed. P. F. Bedaque, M.J. Savage, R. Seki, and U. van Kolck (World Scientific, Singapore, 1999)

  8. Nuclear Physics with Effective Field Theory, ed. R. Seki, U. van Kolck, and M. J. Savage (World Scientific, Singapore, 1998)

  9. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998)

    Article  ADS  Google Scholar 

  10. U. van Kolck, Nucl. Phys. A 645, 273 (1999)

    Article  ADS  Google Scholar 

  11. J.W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A 653, 386 (1999)

    Article  ADS  Google Scholar 

  12. K. Riisager, Rev. Mod. Phys. 66, 1105 (1994)

    Article  ADS  Google Scholar 

  13. M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen, Phys. Rep. 231, 151 (1993)

    Article  ADS  Google Scholar 

  14. P.G. Hansen, A.S. Jensen, B. Jonson, Ann. Rev. Nucl. Part. Sci 45, 591 (1995)

    Article  ADS  Google Scholar 

  15. A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Rev. Mod. Phys. 76, 215 (2004)

    Article  ADS  Google Scholar 

  16. D.L. Canham, H.-W. Hammer, Eur. Phys. J. A 37, 367 (2008)

    Article  ADS  Google Scholar 

  17. D.L. Canham, H.-W. Hammer, Nucl. Phys. A 836, 275 (2010)

    Article  ADS  Google Scholar 

  18. G. Rupak, R. Higa, Phys. Rev. Lett 106, 222501 (2011)

    Article  ADS  Google Scholar 

  19. L. Fernando, R. Higa, G. Rupak, Eur. Phys. J. A 48, 24 (2012)

    Article  ADS  Google Scholar 

  20. X. Zhang, K.M. Nollett, D.R. Phillips, Phys. Rev. C 89, 024613 (2014)

    Article  ADS  Google Scholar 

  21. H. Hammer, D. Phillips, Nucl. Phys. A 865, 17 (2011)

    Article  ADS  Google Scholar 

  22. P. Hagen, H.-W. Hammer, L. Platter, Eur. Phys. J. A 49, 118 (2013)

    Article  ADS  Google Scholar 

  23. J. Vanasse, Phys. Rev. C 95, 024318 (2017a)

    Article  ADS  Google Scholar 

  24. H.-W. Hammer, C. Ji, D.R. Phillips, J. Phys. G: Nucl. Part. Phys. 44, 103002 (2017)

    Article  ADS  Google Scholar 

  25. C. Ji, C. Elster, D.R. Phillips, Phys. Rev. C 90, 044004 (2014)

    Article  ADS  Google Scholar 

  26. C.A. Bertulani, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 712, 37 (2002)

    Article  ADS  Google Scholar 

  27. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003)

    Article  ADS  Google Scholar 

  28. M.M. Arani, M. Radin, S. Bayegan, Prog. Theoret. Exp. Phys. 9, 093D07 (2017)

    Google Scholar 

  29. M. Gobel, H. Hammer, C. Ji, D. Phillips, Few-Body Syst. 60, 61 (2019)

    Article  ADS  Google Scholar 

  30. J. Rotureau, U. van Kolck, Few-Body Syst. 54, 725 (2013)

    Article  ADS  Google Scholar 

  31. R.A. Arndt, D.D. Long, L.D. Roper, Nucl. Phys. A 209, 429 (1973)

    Article  ADS  Google Scholar 

  32. I. Tanihata, D. Hirata, T. Kobayashi, S. Shimoura, K. Sugimoto, H. Toki, Phys. Lett. B 289, 261 (1992)

    Article  ADS  Google Scholar 

  33. J. Vanasse, Phys. Rev. C 95, 024002 (2017b)

    Article  ADS  Google Scholar 

  34. D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Rev. C 59, 617 (1999)

    Article  ADS  Google Scholar 

  35. J. Vanasse, Phys. Rev. C 98, 034003 (2018)

    Article  ADS  Google Scholar 

  36. S. Kopecky, J.A. Harvey, N.W. Hill, M. Krenn, M. Pernicka, P. Riehs, S. Steiner, Phys. Rev. C 56, 2229 (1997)

    Article  ADS  Google Scholar 

  37. E. Ryberg, C.H. Forssén, L. Platter, Few-Body Syst. 58, 143 (2017)

    Article  ADS  Google Scholar 

  38. A.N. Antonov, D.N. Kadrev, M.K. Gaidarov, E. Moya de Guerra, P. Sarriguren, J.M. Udias, V.K. Lukyanov, E.V. Zemlyanaya, G.Z. Krumova, Phys. Rev. C 72, 044307 (2005)

    Article  ADS  Google Scholar 

  39. I. Sick, Phys. Rev. C 77, 041302(R) (2008)

    Article  ADS  Google Scholar 

  40. L.-B. Wang, P. Mueller, K. Bailey, G.W.F. Drake, J.P. Greene, D. Henderson, R.J. Holt, R.V.F. Janssens, C.L. Jiang, Z.-T. Lu, T.P. O’Connor, R.C. Pardo, K.E. Rehm, J.P. Schiffer, X.D. Tang, Phys. Rev. Lett. 93, 142501 (2004)

    Article  ADS  Google Scholar 

  41. I. Sick, J. Phys. Chem. Ref. Data 44, 031213 (2015)

    Article  ADS  Google Scholar 

  42. M. Brodeur, T. Brunner, C. Champagne, S. Ettenauer, M.J. Smith, A. Lapierre, R. Ringle, V.L. Ryjkov, S. Bacca, P. Delheij, G.W.F. Drake, D. Lunney, A. Schwenk, J. Dilling, Phys. Rev. Lett 108, 052504 (2012)

    Article  ADS  Google Scholar 

  43. S. Karataglidis, P.J. Dortmans, K. Amos, C. Bennhold, Phys. Rev. C 61, 024319 (2000)

    Article  ADS  Google Scholar 

  44. S.C. Pieper, R.B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001)

    Article  ADS  Google Scholar 

  45. S. König, H.W. Grießhammer, H.-W. Hammer, J. Phys. G Nucl. Part. Phys. 42(4), 045101 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. N. Antonov and M. K. Gaidarov for providing the data of their DWBA calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bayegan.

Additional information

Communicated by Vittorio Somà

Appendices

Appendix 1: The Faddeev equation of the particle-dimer scattering process in \(nn\alpha \) system

Since \({}^{6}\text {He}\) nucleus has spin-parity \(J^{P}=0^{+}\) in the ground state, we apply the Faddeev equation (T-matrix) of the particle-dimer scattering process in \(nn\alpha \) system with \(J^{P}=0^{+}\). This integral equation is shown in Fig. 8. According to Lagrangian in Eq. (4) we use two different dimers, \(d_{0}\) and \(d_{1}\), so there are four possible transitions between particle-dimer states

$$\begin{aligned} n+d_{1}\longrightarrow & {} n+d_{1},\;\;\;\;\;\;\;\; n+d_{1}\longrightarrow \phi +d_{0},\nonumber \\ \phi +d_{0}\longrightarrow & {} n+d_{1},\;\;\;\;\;\;\;\phi +d_{0}\longrightarrow \phi +d_{0}. \end{aligned}$$
(A.1)

In the c.m. frame, on-shell T-matrix depends on the total energy E and the incoming (outgoing) three-momentums of the \(\phi +d_{0}\) and \(n+d_{1}\) systems which indicated by \(k_{1}\;(p_{1})\) and \(k_{2}\;(p_{2})\) respectively.

In the cluster-configuration space, the projection operator of \({}^{6}\text {He}\) channel is obtained by

$$\begin{aligned} ({\mathcal {P}}_{0^{+}}){}^{\beta _{1},\beta _{2}}_{{\bar{\alpha }},\alpha }=\left( \begin{array}{c@{\quad }c} \mathbf {1}{}^{\beta _{1}}_{\alpha } &{} 0 \\ 0 &{} \sqrt{\frac{3}{2}}\Big (\sigma _{2}{\hat{e}}\cdot \mathbf {S}\Big ){}^{\beta _{2}}_{{\bar{\alpha }}}\\ \end{array} \right) , \end{aligned}$$
(A.2)

where \(\mathbf {1}\) is the \(2\times 2\) unit matrix and \({\hat{e}}\) denotes the unit vector of c.m. momentum of the \(n+d_{1}\) system [28]. Applying the projection operator according to Eq. (A.2), the resulting \(2\times 2\) T-matrix integral equation can be given by

$$\begin{aligned}&T(E,k_{1},p_{1},k_{2},p_{2})=\Big [R(E,k_{1},p_{1},k_{2},p_{2})+ H(k_{2},p_{2},\varLambda )\Big ]\nonumber \\&\qquad -\frac{1}{2\pi ^{2}}\int _{0}^{\varLambda }q^{2}dq\Big [\Big (R(E,k_{1},q,k_{2},q)+ H(k_{2},q,\varLambda )\Big )\nonumber \\&\quad \cdot D(E,q)\cdot T(E,q,p_{1},q,p_{2})\Big ], \end{aligned}$$
(A.3)

where \(\varLambda \) is an ultraviolet cutoff. The kernel \(R(E,k_{1},q_{1},k_{2},q_{2})\) is a \(2\times 2\) matrix introduced by [28]

$$\begin{aligned} R(E,k_{1},q_{1},k_{2},q_{2})\equiv \left( \begin{array}{c@{\quad }c} 0 &{} R_{10}(E,k_{2},q_{1}) \\ R_{01}(E,k_{1},q_{2}) &{} R_{11}(E,k_{2},q_{2}) \\ \end{array} \right) ,\nonumber \\ \end{aligned}$$
(A.4)

that

$$\begin{aligned}&R_{11}(E,k,q)=-\frac{g_{1}^{2}m_{\alpha }}{6}\Big [2(1-r)\frac{k^{2} +q^{2}}{k q}Q_{1}(\varepsilon _{11}(E,k,q))\nonumber \\ \nonumber \\&\quad +\frac{8}{3}Q_{2}(\varepsilon _{11}(E,k,q))+\left( \frac{4}{3}+(1-r)^{2})Q_{0}(\varepsilon _{11}(E,k,q)\right) \Big ], \end{aligned}$$
(A.5)
$$\begin{aligned} R_{10}(E,k,q)= & {} -\frac{ g_{0} g_{1}m_{n}}{4\sqrt{3}}\Big [\frac{2}{k}Q_{1}(\varepsilon _{10}(E,k,q)) \nonumber \\&\qquad \quad +\frac{1+r}{q}Q_{0}(\varepsilon _{10}(E,k,q))\Big ], \end{aligned}$$
(A.6)
$$\begin{aligned} R_{01}(E,k,q)= & {} -\frac{g_{0} g_{1}m_{n}}{4\sqrt{3}}\Big [\frac{2}{q}Q_{1}(\varepsilon _{01}(E,k,q)) \nonumber \\&\qquad \quad +\frac{1+r}{k}Q_{0}(\varepsilon _{01}(E,k,q))\Big ]. \end{aligned}$$
(A.7)

The relation between the \(L-th\) Legendre function of the first kind \(P_{L}(z)\) and the second kind \(Q_{L}(z)\) is written by \(Q_{L}(z)=\frac{1}{2}\int _{-1}^{1}dt\frac{P_{L}(t)}{z-t}\), therefore

$$\begin{aligned} Q_{0}(z)= & {} \frac{1}{2}\mathrm {ln}\Big (\frac{z+1}{z-1}\Big ),\nonumber \\ Q_{1}(z)= & {} \frac{1}{2}z \mathrm {ln}\Big (\frac{z+1}{z-1}\Big )-1,\nonumber \\ Q_{0}(z)= & {} -\frac{3}{2}z+\frac{1}{4}(3z^{2}-1)\mathrm {ln}\Big (\frac{z+1}{z-1}\Big ). \end{aligned}$$
(A.8)

The functions of \(\varepsilon _{11}\), \(\varepsilon _{10}\), and \(\varepsilon _{01}\) in the above equation are defined by [28]

$$\begin{aligned} \varepsilon _{11}(E,k,q)= & {} \frac{m_{\alpha }\;E - \frac{m_{\alpha }}{2\mu }(k^{2}+q^{2})}{k q},\nonumber \\ \varepsilon _{10}(E,k,q)= & {} \frac{m_{n}\;E - k^{2} - \frac{m_{n}}{2\mu }q^{2}}{k q},\nonumber \\ \varepsilon _{01}(E,k,q)= & {} \frac{m_{n}\;E - \frac{m_{n}}{2\mu }k^{2} - q^{2}}{k q}. \end{aligned}$$
(A.9)

In Eq. (A.3), the three-body force H shown by a bare trimer with external particle-dimer lines in Fig. 8 is given by the following relation

$$\begin{aligned} H(k,q,\varLambda )\equiv \left( \begin{array}{c@{\quad }c} 0 &{} 0 \\ 0 &{} -\frac{m_{n}\;g_{1}^{2} k q H_{0}(\varLambda )}{\varLambda ^{2}}\\ \end{array} \right) , \end{aligned}$$
(A.10)

which connects only the incoming and outgoing \(n+d_{1}\) channels [25, 28, 30]. The bound state equation is written as

Fig. 8
figure 8

Representation of the integral equation for the T-matrix. Single, double, triple lines denote particles, dimers and trimers respectively. Triple lines with empty arrow are the bare trimer propagators

$$\begin{aligned} T_{{}^{6}He}(p)= & {} \!-\!\frac{1}{2\pi ^{2}}\int _{0}^{\varLambda }q^{2}dq \Big [R(-B_{2n},k,q,k,q)\!+\! H(k,q,\varLambda )\Big ] \nonumber \\&\qquad \cdot D(-B_{2n},q)\cdot T_{{}^{6}He}(q), \end{aligned}$$
(A.11)

The transition \(xX\rightarrow yY\) \((x,y = \phi , n\) and \(X, Y = d_{0}, d_{1})\) contributes to construction of \({}^{6}\text {He}\) such that

$$\begin{aligned} \!\!\!\!\!T_{{}^{6}He}(q)\!\equiv \!\left( \! \begin{array}{c@{\quad }c} T_{{}^{6}He,\;\phi d_{0}\rightarrow \phi d_{0}}(q) &{} T_{{}^{6}He,\;n d_{1}\rightarrow \phi d_{0}}(q) \\ T_{{}^{6}He,\;\phi d_{0}\rightarrow n d_{1}}(q) &{} T_{{}^{6}He,\;n d_{1}\rightarrow n d_{1}}(q)\\ \end{array} \!\right) . \end{aligned}$$
(A.12)

For the incoming \(\phi +d_{0}\) channel, the proper normalization condition for the solution of Eq. (A.11) is [45]

$$\begin{aligned} \Big (D\mathbf {{\mathcal {B}}}\Big )^{T}\otimes \left. \frac{d}{dE}\Big (I-K\Big )\right| _{E=-B_{2n}}\otimes \Big (D\mathbf {{\mathcal {B}}}\Big )= \mathbf {1}, \end{aligned}$$
(A.13)

where D matrix is given by Eq. (19), \(\mathbf {{\mathcal {B}}}=T_{{}^{6}He}{1\atopwithdelims ()0}={{\mathcal {B}}_{0}\atopwithdelims (){\mathcal {B}}_{1}}\) is the bound state vector, and K is given by \(K(E,q,q')=R(E,q,q',q,q')+ H(q,q',\varLambda )\). We must define the inverse propagators matrix \(I=\mathrm {diag}(I_{0},I_{1})\) with

$$\begin{aligned} I_{0,1}= \frac{2\pi ^{2}}{q^{2}}\;\delta (q-q')\; {\overline{D}}_{0,1}(E,q)^{-1}. \end{aligned}$$
(A.14)

We have defined here the short notation [45]

$$\begin{aligned} A\otimes B \equiv \frac{1}{2 \pi ^{2}} \int _{0}^{\varLambda } q^{2} dq\; A(\cdots , q) B(q,\cdots ). \end{aligned}$$
(A.15)

Therefore for each cutoff \(\varLambda \), we have fixed the \(H_{0}(\varLambda )=\frac{h^{2}}{\varOmega }\) parameter such that Eq. (A.11) is satisfied at experimental value of \(E=-B_{2n}=-0.97 \;\text {MeV}\).

Appendix 2: the contribution of diagrams \((\text {a})\), \((\text {b})\), \((\text {c})\) and \((\text {d})\) to charge form factor

In this appendix, we introduce explicitly the relations of four different diagrams (a–d) that contribute to the charge form factor as shown in Fig. 5.

1.1 B.1 Contribution \({\mathcal {F}}_{E}^{(a)}\)

After performing the energy integral analytically, using Eqs. (4), (22)–(24) and Feynman rules, the contribution of diagram (a) in Fig. 5 is given by

$$\begin{aligned} {\mathcal {F}}^{(a)}(Q^{2})= & {} \int _{0}^{\varLambda } \frac{p^{2}}{2\pi ^{2}}\;dp\;\int _{0}^{\varLambda } \frac{k^{2}}{2\pi ^{2}}\;dk\;\mathbf {{\mathcal {G}}}^{irr}(p)^{T} \nonumber \\&\times D(p)\;\varUpsilon ^{(a)}(Q,p,k) D(k)\;\mathbf {{\mathcal {G}}}^{irr}(k), \end{aligned}$$
(B.1)

where the components of \(2\times 2\) matrix \(\varUpsilon ^{(a)}(Q,p,k)\) are given by

$$\begin{aligned}&\varUpsilon ^{(a)}_{ij}(Q,p,k)=\frac{g_{1}^{2}}{4}\;\frac{(2\mu )^{2}}{8\pi }\int _{-1}^{1}dx\int _{-1}^{1}dy\int _{0}^{2\pi }d\phi \nonumber \\&\times \bigg \{p^{2}+k^{2}+r'^{2}-2(ky+\frac{m_{n}}{M_{1}}px)r' \nonumber \\&\quad +\frac{2m_{n}}{M_{1}}k p(\sqrt{1-x^{2}}\sqrt{1-y^{2}}\cos \phi +xy)+2\mu B_{2n}\bigg \}^{-1}\nonumber \\&\times \bigg \{p^{2}+k^{2}+r'^{2}+2(px+\frac{m_{n}}{M_{1}}ky)r' \nonumber \\&\quad +\frac{2m_{n}}{M_{1}}k p(\sqrt{1-x^{2}}\sqrt{1-y^{2}}\cos \phi +xy)+2\mu B_{2n}\bigg \}^{-1}\nonumber \\&\times U(p, k, Q, x, y, \phi )\;\delta _{i1}\;\delta _{j1}, \end{aligned}$$
(B.2)

where \(\mathbf {r'}=\frac{m_{n}}{M_{tot}}\mathbf {Q}\), \(\mu =\frac{m_{n}m_{\alpha }}{m_{n}+m_{\alpha }}\), the polar angles \(x=\cos (\angle (\mathbf {Q},\mathbf {p}))\), \(y=\cos (\angle (\mathbf {Q},\mathbf {k}))\), \(\cos (\angle (\mathbf {p},\mathbf {k}))=\sqrt{(1-x^{2})}\sqrt{(1-y^{2})}\cos \phi +xy\) and

$$\begin{aligned}&U(p, k, Q, x, y, \phi )=-4 r'^{2}x y+\frac{4}{3}p y r'\Big (1+\frac{4 m_{n}}{M_{1}}\Big ) \nonumber \\&-\frac{4}{3}k x r'\Big (1+\frac{4 m_{n}}{M_{1}}\Big )\nonumber \\&\quad -\frac{20}{3}p x r'\left( \sqrt{1-x^{2}}\sqrt{1-y^{2}}\cos \phi +xy\right) \nonumber \\&\quad +\frac{20}{3}k y r'\left( \sqrt{1-x^{2}}\sqrt{1-y^{2}}\cos \phi +xy\right) \nonumber \\&\quad +\frac{16}{3}\frac{m_{n}}{M_{1}}\;p^{2}\left( \sqrt{1-x^{2}}\sqrt{1-y^{2}}\cos \phi +xy\right) \nonumber \\&\quad +\frac{16}{3}\frac{m_{n}}{M_{1}}\;k^{2}\left( \sqrt{1-x^{2}}\sqrt{1-y^{2}}\cos \phi +xy\right) \nonumber \\&\quad -\frac{4}{3}\;r'^{2}\left( \sqrt{1-x^{2}}\sqrt{1-y^{2}}\cos \phi +xy\right) \nonumber \\&\quad +\frac{20}{3}\;k p\left( \sqrt{1-x^{2}}\sqrt{1-y^{2}}\cos \phi +xy\right) ^{2} \nonumber \\&\quad -\frac{4}{3} p k\Big (1-\frac{4 m_{n}^{2}}{M_{1}^{2}}\Big ). \end{aligned}$$
(B.3)

1.2 B.2 Contribution \({\mathcal {F}}_{E}^{(b)}\)

For the contribution of the diagram (b) in Fig. 5, calculating the energy integral analytically, applying Eqs. (4), (22)–(24) and Feynman rules lead to the following relations

$$\begin{aligned} {\mathcal {F}}^{(b)}(Q^{2})= & {} \;\int _{0}^{\varLambda } \Big (-\frac{p^{2}}{2\pi ^{2}}\Big )\;dp\;\int _{0}^{\varLambda } \Big (-\frac{k^{2}}{2\pi ^{2}}\Big )\;dk \nonumber \\\times & {} \mathbf {{\mathcal {G}}}^{irr}(p)^{T}\;D(p) \;\varUpsilon ^{(b)}(Q,p,k)\;D(k)\;\mathbf {{\mathcal {G}}}^{irr}(k), \nonumber \\ \end{aligned}$$
(B.4)

where

$$\begin{aligned} \varUpsilon ^{(b)}_{ij}(Q,p,k)=\!\frac{m_{\alpha }}{2}\!\int _{0}^{\varLambda } \!\Big (\frac{q^{2}}{2\pi ^{2}}\!\Big )\!\frac{d q}{q}\!\int _{-1}^{1}\!\frac{d x'}{x'}\chi ^{(b)}_{ij}(r', q, x',p,k), \nonumber \\ \end{aligned}$$
(B.5)

so that

$$\begin{aligned}&\chi ^{(b)}_{ij}(r', q, x', p, k)=\;\frac{1}{Q}\;\Big \{R_{i0}\Big (-B_{2n}, p, d(q, r', x')\Big )\nonumber \\&\quad \times {\overline{D}}_{0}\Big (-B_{2n}\;-\;\frac{m_{n}}{4m_{\alpha }M_{tot}}\;Q^2\;-\;\frac{q Q x'}{2 m_{\alpha }}, q\Big )\nonumber \\&\quad \times R_{0j}\Big (-B_{2n}\;-\;\frac{q Q x'}{m_{\alpha }}, d(q, r', -x'), k\Big )\nonumber \\&-R_{i0}\Big (-B_{2n}\;+\;\frac{q Q x'}{m_{\alpha }}, p, d(q, r', x')\Big )\nonumber \\&\quad \times {\overline{D}}_{0}\Big (-B_{2n}\;-\;\frac{m_{n}}{4m_{\alpha }M_{tot}}\;Q^2\;+\;\frac{q Q x'}{2 m_{\alpha }}, q\Big )\nonumber \\&\quad \times R_{0j}\Big (-B_{2n}, d(q, r',-x'), k\Big )\Big \}\;\delta _{i1}\;\delta _{j1}, \end{aligned}$$
(B.6)

with \( d(q, r', \pm x')=\sqrt{q^{2}+r'^{2}\pm 2qr'x'}\).

1.3 B.3 Contribution \({\mathcal {F}}_{E}^{(c)}\)

The leading contribution to charge form factor in the \({}^{6}\text {He}\) halo nucleus comes from diagram (c) in Fig. 5 by coupling the photon to \(\alpha \) core inside a \(n\alpha \) bubble.

Fig. 9
figure 9

Diagrammatic representation of diagram (c)

For calculating the contribution of the form factor presented in Fig. 9, we start with the four-momentum integration as

$$\begin{aligned}&{\mathcal {F}}^{(c)}(Q^{2})=(-ie{\mathcal {Z}})^{-1}\;\int _{k<\varLambda }\frac{d^{4}k}{(2\pi )^{4}} \;\int _{p<\varLambda } \frac{d^{4}p}{(2\pi )^{4}}\;(2\pi )^{4} \nonumber \\&\times \delta (k_{0}-p_{0})\delta ^{(3)}(\mathbf {k}-\mathbf {p}-\frac{m_{n}}{M_{tot}}\mathbf {Q}) \nonumber \\&\times (-ie{\mathcal {Z}})\; \Big \{i\;{\mathcal {G}}_{1}^{irr}(P_{0},\mathbf {P},p_{0},\mathbf {P})^{T} \nonumber \\&\qquad \qquad \times \frac{i}{\frac{m_{n}}{M_{tot}}P_{0}-p_{0}-\frac{(\frac{m_{n}}{M_{tot}}\mathbf {P}-\mathbf {p})^{2}}{2m_{n}}+i\varepsilon } \nonumber \\&\qquad \qquad \times \Big [-i\varSigma \Big (\frac{M_{1}}{M_{tot}}{\bar{P}}+{\bar{p}},\frac{M_{1}}{M_{tot}}{\bar{K}}+{\bar{k}}\Big )\Big ] \nonumber \\&\qquad \qquad \times i D_{1}\Big (\frac{M_{1}}{M_{tot}}K_{0}+k_{0},\frac{M_{1}}{M_{tot}}\mathbf {K}+\mathbf {k}\Big )\nonumber \\&\qquad \qquad \times i D_{1}\Big (\frac{M_{1}}{M_{tot}}P_{0}+p_{0},\frac{M_{1}}{M_{tot}}\mathbf {P}+\mathbf {p}\Big ) \nonumber \\&\qquad \qquad \times i\;{\mathcal {G}}_{1}^{irr}(K_{0},\mathbf {K},k_{0},\mathbf {k})\Big \}, \end{aligned}$$
(B.7)

where \(\varSigma \Big (\frac{M_{1}}{M_{tot}}{\bar{P}}+{\bar{p}},\frac{M_{1}}{M_{tot}}{\bar{K}}+{\bar{k}}\Big )\) is the \(n\alpha \) bubble contribution in Fig. 9. One of the two four-momentum integrations in Eq. (B.7) is absorbed by a delta-function, so we obtain

$$\begin{aligned} {\mathcal {F}}^{(c)}(Q^{2})= & {} \int _{p<\varLambda }\frac{d^{4}p}{(2\pi )^{4}}\; \Big \{{\mathcal {G}}_{1}^{irr}(P_{0},\mathbf {P},p_{0},\mathbf {P})^{T} \nonumber \\\times & {} \frac{i}{\frac{m_{n}}{M_{tot}}P_{0}-p_{0}-\frac{(\frac{m_{n}}{M_{tot}}\mathbf {P}-\mathbf {p})^{2}}{2m_{n}}+i\varepsilon } \nonumber \\\times & {} \Big [-i\varSigma \Big (\frac{M_{1}}{M_{tot}}{\bar{P}}+{\bar{p}},\frac{M_{1}}{M_{tot}}{\bar{K}}+{\bar{k}}\Big )\Big ] \nonumber \\\times & {} D_{1}\Big (\frac{M_{1}}{M_{tot}}K_{0}+p_{0},\frac{M_{1}}{M_{tot}}\mathbf {K}+\mathbf {p}+\frac{m_{n}}{M_{tot}}\mathbf {Q}\Big ) \nonumber \\\times & {} D_{1}\Big (\frac{M_{1}}{M_{tot}}P_{0}+p_{0},\frac{M_{1}}{M_{tot}}\mathbf {P}+\mathbf {p}\Big ) \nonumber \\\times & {} {\mathcal {G}}_{1}^{irr}(K_{0},\mathbf {K},p_{0},\mathbf {p}+\frac{m_{n}}{M_{tot}}\mathbf {Q})\Big \}. \end{aligned}$$
(B.8)

Using the rescaled four-momentum \({\bar{s}}=\frac{m_{n}}{2M_{tot}}{\bar{Q}}\) and the shifted loop momentum according to \({\bar{p}}\mapsto {\bar{q}}-{\bar{s}}\), we have

$$\begin{aligned} {\mathcal {F}}^{(c)}(Q^{2})= & {} \int _{q<\varLambda }\frac{d^{3}\mathbf {q}}{(2\pi )^{3}}\int _{-\infty }^{+\infty }\frac{d q_{0}}{2\pi }\; \Big \{{\mathcal {G}}_{1}^{irr}(P_{0},\mathbf {P},{\bar{q}}-{\bar{s}})^{T} \nonumber \\\times & {} \frac{i}{\frac{m_{n}}{M_{tot}}P_{0}-q_{0}-\frac{(\frac{m_{n}}{M_{tot}}\mathbf {P}-\mathbf {q}+\mathbf {s})^{2}}{2m_{n}} +i\varepsilon } \nonumber \\\times & {} \Big [-i\varSigma \Big (\frac{M_{1}}{M_{tot}}{\bar{P}}+{\bar{q}}-{\bar{s}},\frac{M_{1}}{M_{tot}}{\bar{K}}+{\bar{q}}+{\bar{s}}\Big )\Big ] \nonumber \\\times & {} D_{1} \Big (\frac{M_{1}}{M_{tot}}K_{0}+q_{0},\frac{M_{1}}{M_{tot}}\mathbf {K}+\mathbf {q}+\mathbf {s}\Big )\nonumber \\\times & {} D_{1}\Big (\frac{M_{1}}{M_{tot}}P_{0}+q_{0},\frac{M_{1}}{M_{tot}}\mathbf {P}+\mathbf {q}-\mathbf {s}\Big ) \nonumber \\\times & {} {\mathcal {G}}_{1}^{irr}(K_{0},\mathbf {K},{\bar{q}}+{\bar{s}})\Big \}. \end{aligned}$$
(B.9)

After performing the \(q_{0}\) integration according to the pole \(q_{0}=\frac{m_{n}}{M_{tot}}P_{0}-\frac{(\frac{m_{n}}{M_{tot}}\mathbf {P}-\mathbf {q}+\mathbf {s})^{2}}{2m_{n}}+i\varepsilon \), we obtain

$$\begin{aligned} {\mathcal {F}}^{(c)}(Q^{2})= & {} \int _{q<\varLambda }\frac{d^{3}\mathbf {q}}{(2\pi )^{3}}\; \Big \{{\mathcal {G}}_{1}^{irr}(P_{0},\mathbf {P},{\bar{q}}-{\bar{s}})^{T}\; \nonumber \\\times & {} \Big [-i\varSigma \Big (\frac{M_{1}}{M_{tot}}{\bar{P}}+{\bar{q}}-{\bar{s}},\frac{M_{1}}{M_{tot}}{\bar{K}}+{\bar{q}}+{\bar{s}}\Big )\Big ] \nonumber \\\times & {} D_{1}\Big (\frac{M_{1}}{M_{tot}}K_{0}+q_{0},\frac{M_{1}}{M_{tot}}\mathbf {K}+\mathbf {q}+\mathbf {s}\Big )\nonumber \\\times & {} D_{1}\Big (\frac{M_{1}}{M_{tot}}P_{0}+q_{0},\frac{M_{1}}{M_{tot}}\mathbf {P}+\mathbf {q}-\mathbf {s}\Big ) \nonumber \\\times & {} {\mathcal {G}}_{1}^{irr}(K_{0},\mathbf {K},{\bar{q}}+{\bar{s}})\Big \}. \end{aligned}$$
(B.10)

Considering Eq. (24) and by substituting the pole \(q_{0}\), we have

$$\begin{aligned} {\mathcal {G}}_{1}^{irr}(P_{0},\mathbf {P},{\bar{q}}-{\bar{s}})^{T}= & {} \frac{1}{\sqrt{3}}\;\frac{m_{n}\;g_{1}^{2}}{\varLambda ^{2}}\;\left| \beta \;H_{0}(\varLambda )\right| \;d(q, s, -x')\nonumber \\- & {} \sum _{i=0}^{1}\int _{0}^{\varLambda }dp\frac{p^{2}}{2\pi ^{2}}\;{\mathcal {G}}_{i}^{irr}(E,p)\;{\overline{D}}_{i}(E,p) \nonumber \\&\quad \times R_{i1}\Big (E,p,d(q, s, -x')\Big ), \end{aligned}$$
(B.11)
$$\begin{aligned} {\mathcal {G}}_{1}^{irr}(K_{0},\mathbf {K},{\bar{q}}+{\bar{s}})= & {} \frac{1}{\sqrt{3}}\;\frac{m_{n}\;g_{1}^{2}}{\varLambda ^{2}}\;\left| \beta \;H_{0}(\varLambda )\right| \;d(q, s, x')\nonumber \\- & {} \sum _{j=0}^{1}\int _{0}^{\varLambda }dk\frac{k^{2}}{2\pi ^{2}}\;R_{1j}\Big (E,d(q, s, x'),k\Big )\nonumber \\&\quad \times {\overline{D}}_{j}(E,k)\;{\mathcal {G}}_{j}^{irr}(E,k), \end{aligned}$$
(B.12)

with \(d(q, s, \pm x')=\sqrt{q^{2}+s^{2}\pm 2qsx'}\) and the polar angle \(x'=\cos (\angle (\mathbf {Q},\mathbf {q}))\). Using Eq. (9), Eq. (19) and inserting the pole \(q_{0}\), we can redefine the two propagators in Eq. (B.9) as

$$\begin{aligned}&D_{1}\Big (\frac{M_{1}}{M_{tot}}K_{0}+q_{0},\frac{M_{1}}{M_{tot}}\mathbf {K}+\mathbf {q}+\mathbf {s}\Big ) \nonumber \\&\qquad \quad \qquad ={\overline{D}}_{1}\Big (E-\frac{m_{n}}{8M_{1}M_{tot}}Q^{2}-\frac{q Q x'}{2M_{1}},q\Big ), \end{aligned}$$
(B.13)
$$\begin{aligned}&D_{1}\Big (\frac{M_{1}}{M_{tot}}P_{0}+q_{0},\frac{M_{1}}{M_{tot}}\mathbf {P}+\mathbf {q}-\mathbf {s}\Big ) \nonumber \\&\quad \qquad ={\overline{D}}_{1}\Big (E-\frac{m_{n}}{8M_{1}M_{tot}}Q^{2}+\frac{q Q x'}{2M_{1}},q\Big ). \end{aligned}$$
(B.14)

1.3.1 B.3.1 Bubble diagram

Fig. 10
figure 10

Diagrammatic representation of the bubble contribution \(-i\varSigma ({\bar{p}},{\bar{k}})\)

We now calculate the term \(-i\varSigma \Big (\frac{M_{1}}{M_{tot}}{\bar{P}}+{\bar{q}}-{\bar{s}},\frac{M_{1}}{M_{tot}}{\bar{K}}+{\bar{q}}+{\bar{s}}\Big )\) for the bubble diagram depicted in Fig. 10. For general incoming (outgoing) four-momenta \({\bar{p}}\;({\bar{k}})\) and according to Eq. (4), we obtain

$$\begin{aligned} -i\varSigma ({\bar{p}},{\bar{k}})= & {} -\int \frac{d^{3}\mathbf {q'}}{(2\pi )^{3}}\Big (i\frac{g_{1}}{2}\Big )^{2} \nonumber \\\times & {} \Big [\frac{1}{\frac{q'^{2}}{2m_{n}}+\frac{(\mathbf {k}+\mathbf {q'})^{2}}{2m_{\alpha }}-k_{0}}\times \frac{1}{\frac{q'^{2}}{2m_{n}}+\frac{(\mathbf {p}+\mathbf {q'})^{2}}{2m_{\alpha }}-p_{0}}\nonumber \\\times & {} (\mathbf {k}(1-r)+2\mathbf {q'})_{j}(\mathbf {p}(1-r)+2\mathbf {q'})_{i}\;\text {Tr}(S^{\dag }_{j}S_{i})\Big ].\nonumber \\ \end{aligned}$$
(B.15)

According to Eq. (6), we derive \(\text {Tr}(S^{\dag }_{j}S_{i})=\frac{4}{3}\delta _{ij}\). Furthermore, using the relation \(\frac{1}{a_{1}a_{2}}=\int _{0}^{1}\frac{dx}{[a_{1}x+a_{2}(1-x)]^{2}}\) and defining the rescaled loop momentum \(\mathbf {b}:=\frac{\mathbf {q'}+\frac{\mu }{m_{\alpha }}[x\mathbf {p}+(1-x)\mathbf {k}]}{\frac{\mu }{m_{\alpha }}Q}\) and replacing our kinematics \({\bar{p}}\mapsto \frac{M_{1}}{M_{tot}}{\bar{P}}+{\bar{q}}-{\bar{s}}\) and \({\bar{k}}\mapsto \frac{M_{1}}{M_{tot}}{\bar{K}}+{\bar{q}}+{\bar{s}}\) in Eq. (B.15), we can obtain the following relation for the bubble contribution, \(\varSigma \), as

$$\begin{aligned}- & {} i\varSigma \Big (\frac{M_{1}}{M_{tot}}{\bar{P}}+{\bar{q}}-{\bar{s}},\frac{M_{1}}{M_{tot}}{\bar{K}}+{\bar{q}}+{\bar{s}}\Big ) \nonumber \\&=\frac{4}{3}\frac{\mu \;m_{\alpha }}{Q}g_{1}^{2}\int _{0}^{1}dx\int \frac{d^{3}\mathbf {b}}{(2\pi )^{3}} \Bigg \{\frac{1}{(b^{2}-A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x))^{2}} \nonumber \\&\times \Bigg [\Big (\frac{M_{1}}{M_{tot}}\mathbf {K}+\mathbf {q}+\mathbf {s}\Big )(1-r) \nonumber \\&\qquad + \frac{2\mu }{m_{\alpha }}\Big (Q\mathbf {b}-\Big [x\Big (\frac{M_{1}}{M_{tot}}\mathbf {P}+\mathbf {q}-\mathbf {s}\Big ) \nonumber \\&\qquad +(1-x)\Big (\frac{M_{1}}{M_{tot}}\mathbf {K}+\mathbf {q}+\mathbf {s}\Big )\Big ]\Big )\Bigg ]_{i} \nonumber \\&\times \Bigg [\Big (\frac{M_{1}}{M_{tot}}\mathbf {P}+\mathbf {q}-\mathbf {s}\Big )(1-r) \nonumber \\&\qquad + \frac{2\mu }{m_{\alpha }}\Big (Q\mathbf {b}-\Big [x\Big (\frac{M_{1}}{M_{tot}}\mathbf {P}+\mathbf {q}-\mathbf {s}\Big ) \nonumber \\&\qquad +(1-x)\Big (\frac{M_{1}}{M_{tot}}\mathbf {K}+\mathbf {q}+\mathbf {s}\Big )\Big ]\Big )\Bigg ]_{i}\Bigg \}, \nonumber \\ \end{aligned}$$
(B.16)

where

$$\begin{aligned} A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)=x^{2}- x\Big (1+C_{{\overline{P}},{\overline{q}}-{\overline{s}}}- C_{{\overline{K}},{\overline{q}}+{\overline{s}}}\Big )-C_{{\overline{K}},{\overline{q}}+{\overline{s}}}, \nonumber \\ \end{aligned}$$
(B.17)

with

$$\begin{aligned}&C_{{\overline{P}},{\overline{q}}-{\overline{s}}}=2\mu \Big [B_{2n}+\frac{(\mathbf {q}-\mathbf {s})^{2}}{2{\tilde{\mu }}}\Big ]\Big (\frac{M_{1}}{2M_{tot}}\Big )^{2}\frac{1}{s^{2}},\nonumber \\&\quad C_{{\overline{K}},{\overline{q}}+{\overline{s}}}=2\mu \Big [B_{2n}+\frac{(\mathbf {q}+\mathbf {s})^{2}}{2{\tilde{\mu }}}\Big ]\Big (\frac{M_{1}}{2M_{tot}}\Big )^{2}\frac{1}{s^{2}}, \nonumber \\ \end{aligned}$$
(B.18)

and \({\tilde{\mu }}=\frac{m_{n} M_{1}}{M_{tot}}\). Finally, after some derivations, the relation of the bubble contribution in Eq. (B.16) converts to

$$\begin{aligned}- & {} i\varSigma \Big (\frac{M_{1}}{M_{tot}}{\bar{P}}+{\bar{q}}-{\bar{s}},\frac{M_{1}}{M_{tot}}{\bar{K}}+{\bar{q}}+{\bar{s}}\Big ) \nonumber \\= & {} \frac{4}{3}\frac{\mu m_{\alpha }}{Q}g_{1}^{2}\int _{0}^{1}dx\Bigg \{4\frac{\mu ^{2}}{m_{\alpha }^{2}}Q^{2} \int \frac{d^{3}\mathbf {b}}{(2\pi )^{3}}\frac{b^{2}}{[b^{2}-A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)]^{2}} \nonumber \\&+16Qs\Big (\frac{\mu ^{2}}{m_{\alpha }^{2}}\frac{M_{1}}{M_{tot}}\Big )\!(x^{2}\!-\!x)\!\int \!\frac{d^{3}\mathbf {b}}{(2\pi )^{3}} \frac{1}{\left[ b^{2}-A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)\right] ^{2}} \nonumber \\&+ 16\frac{\mu ^{2}}{m_{\alpha }^{2}}s^{2}(\!x^{2}\!-x\!)\!\int \!\frac{d^{3}\mathbf {b}}{(2\pi )^{3}} \frac{1}{[b^{2}-A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)]^{2}} \nonumber \\&+4\Big (\frac{\mu ^{2}}{m_{\alpha }^{2}}\frac{M_{1}^{2}}{M_{tot}^{2}}\Big )Q^{2}(\!x^{2}\!-\!x\!)\!\int \!\frac{d^{3}\mathbf {b}}{(2\pi )^{3}} \frac{1}{\left[ b^{2}-A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)\right] ^{2}}\Bigg \} \nonumber \\= & {} \frac{2i}{3\pi }\frac{\mu ^{3}}{m_{\alpha }}g_{1}^{2}Q[-3I_{4}+I_{3}-I_{2}], \nonumber \\ \end{aligned}$$
(B.19)

where the functions \(I_2\), \(I_3\) and \(I_4\) in the last line are given using the relations

$$\begin{aligned} \int \frac{d^{3}\mathbf {b}}{(2\pi )^{3}} \frac{1}{[b^{2}-A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)]^{2}}= \frac{i}{8\pi }\frac{1}{\sqrt{A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)}}, \nonumber \\ \end{aligned}$$
(B.20)

and

$$\begin{aligned} \int \frac{d^{3}\mathbf {b}}{(2\pi )^{3}} \frac{b^{2}}{[b^{2}-A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)]^{2}}= \frac{3i}{8\pi }\sqrt{A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)}, \nonumber \\ \end{aligned}$$
(B.21)

as

$$\begin{aligned} I_{2}= & {} \int _{0}^{1}dx\frac{x}{\sqrt{A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)}} \nonumber \\= & {} i\left( \sqrt{C_{{\overline{P}},{\overline{q}}-{\overline{s}}}}-\sqrt{C_{{\overline{K}},{\overline{q}}+{\overline{s}}}}\right) \!+\!\frac{\left( 1+C_{{\overline{P}},{\overline{q}}-{\overline{s}}}-C_{{\overline{K}},{\overline{q}}+{\overline{s}}}\right) }{2}I_{1}, \nonumber \\ I_{3}= & {} \int _{0}^{1}dx\frac{x^{2}}{\sqrt{A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)}} \nonumber \\= & {} \frac{1}{4}\Big [\left( 1+C_{{\overline{K}},{\overline{q}}+{\overline{s}}}-C_{{\overline{P}},{\overline{q}}-{\overline{s}}}\right) i\sqrt{C_{{\overline{P}},{\overline{q}}-{\overline{s}}}} \nonumber \\&+\left( 1+C_{{\overline{P}},{\overline{q}}-{\overline{s}}}-C_{{\overline{K}},{\overline{q}}+{\overline{s}}}\right) i\sqrt{C_{{\overline{K}},{\overline{q}}+{\overline{s}}}}\;\Big ] \nonumber \\&+\frac{1}{2}\Big (C_{{\overline{K}},{\overline{q}}+{\overline{s}}}+\frac{(1+C_{{\overline{P}},{\overline{q}}-{\overline{s}}} -C_{{\overline{K}},{\overline{q}}+{\overline{s}}})^{2}}{4}\Big )I_{1} \nonumber \\&+\left( 1+C_{{\overline{P}},{\overline{q}}-{\overline{s}}}-C_{{\overline{K}},{\overline{q}}+{\overline{s}}}\right) i\Big (\sqrt{C_{{\overline{P}},{\overline{q}}-{\overline{s}}}}-\sqrt{C_{{\overline{K}},{\overline{q}}+{\overline{s}}}}\;\Big ) \nonumber \\&+\frac{\left( 1+C_{{\overline{P}},{\overline{q}}-{\overline{s}}}-C_{{\overline{K}},{\overline{q}}+{\overline{s}}}\right) ^{2}}{4}I_{1}, \end{aligned}$$
(B.22)
$$\begin{aligned} I_{4}= & {} \int _{0}^{1} dx \sqrt{A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)}\nonumber \\= & {} \frac{1}{4}\Big [\left( 1+C_{{\overline{K}},{\overline{q}}+{\overline{s}}}-C_{{\overline{P}},{\overline{q}}-{\overline{s}}}\right) i\sqrt{C_{{\overline{P}},{\overline{q}}-{\overline{s}}}} \nonumber \\&+\left( 1+C_{{\overline{P}},{\overline{q}}-{\overline{s}}}-C_{{\overline{K}},{\overline{q}}+{\overline{s}}}\right) i\sqrt{C_{{\overline{K}},{\overline{q}}+{\overline{s}}}}\;\Big ]\nonumber \\&-\frac{1}{2}\left( C_{{\overline{K}},{\overline{q}}+{\overline{s}}}+\frac{(1+C_{{\overline{P}},{\overline{q}}-{\overline{s}}}-C_{{\overline{K}},{\overline{q}}+{\overline{s}}})^{2}}{4}\right) I_{1}. \nonumber \\ \end{aligned}$$
(B.23)

The \(I_1\) function in Eqs. (B.22)–(B.23) is defined by the expression

$$\begin{aligned} I_{1}= & {} \int _{0}^{1}\frac{dx}{\sqrt{A_{\left| {\overline{q}}-{\overline{s}}\right| ,\left| {\overline{q}}+{\overline{s}}\right| }(x)}}\nonumber \\= & {} -i\left[ \arctan \left( \frac{\frac{M_{tot}}{M_{1}}s+\frac{m_{\alpha }}{M_{1}}qx'}{\sqrt{2\mu \left( B_{2n}+\frac{(\mathbf {q}-\mathbf {s})^{2}}{2{\tilde{\mu }}}\right) }}\right) \right. \nonumber \\&\left. \qquad +\arctan \left( \frac{\frac{M_{tot}}{M_{1}}s-\frac{m_{\alpha }}{M_{1}}qx'}{\sqrt{2\mu \left( B_{2n}+\frac{(\mathbf {q}+\mathbf {s})^{2}}{2{\tilde{\mu }}}\right) }}\right) \right] . \end{aligned}$$
(B.24)

1.3.2 3.3.2 Final representation of \({F}^{(c)}(Q^{2})\)

In the final step, by inserting Eqs. (B.11)–(B.14) into Eq. (B.10), we find

$$\begin{aligned}&{\mathcal {F}}^{(c)}(Q^{2})=\;\int _{0}^{\varLambda } \left( -\frac{p^{2}}{2\pi ^{2}}\right) \;dp\;\int _{0}^{\varLambda } \left( -\frac{k^{2}}{2\pi ^{2}}\right) \;dk\;\mathbf {{\mathcal {G}}}^{irr}(p)^{T} \nonumber \\&\times D(p)\;\varUpsilon ^{(c)}(Q,p,k)\;D(k)\;\mathbf {{\mathcal {G}}}^{irr}(k)\nonumber \\&+2\int _{0}^{\varLambda } \left( -\frac{p^{2}}{2\pi ^{2}}\right) dp\mathbf {{\mathcal {G}}}^{irr}(p)^{T}D(p)\mathbf {\varUpsilon }^{(c)}(Q,p)+\varUpsilon ^{(c)}_{0}(Q), \nonumber \\ \end{aligned}$$
(B.25)

where

$$\begin{aligned} \varUpsilon ^{(c)}_{ij}(Q,p,k)= & {} \frac{1}{(2\pi )^{3}}\;\int _{0}^{\varLambda }q^{2}\;dq\;\int _{-1}^{1}dx'\;\int _{0}^{2\pi }d\phi \nonumber \\&\times \chi ^{(c)}_{ij}(\frac{m_{n}}{2M_{tot}}Q, p, k, q, x', \phi ),\nonumber \\ \varUpsilon ^{(c)}_{i}(Q,p)= & {} \frac{1}{(2\pi )^{3}}\;\int _{0}^{\varLambda }q^{2}\;dq\;\int _{-1}^{1}dx'\;\int _{0}^{2\pi }d\phi \nonumber \\&\times \chi ^{(c)}_{i}(\frac{m_{n}}{2M_{tot}}Q, p, q, x', \phi ),\nonumber \\ \varUpsilon ^{(c)}_{0}(Q)= & {} \frac{1}{(2\pi )^{3}}\int _{0}^{\varLambda }q^{2}dq\int _{-1}^{1}dx'\int _{0}^{2\pi }d\phi \nonumber \\&\times \chi ^{(c)}_{0}(\frac{m_{n}}{2M_{tot}}Q, q, x', \phi ), \nonumber \\ \end{aligned}$$
(B.26)

with the following relations

$$\begin{aligned}&\chi ^{(c)}_{ij}(\frac{m_{n}}{2M_{tot}}Q, q, x, p, k)=R_{i1}\left( -B_{2n}, p, d(q, s, -x')\right) \nonumber \\&\qquad \times {\overline{D}}_{1}\left( -B_{2n}\;-\;\frac{m_{n}}{8M_{1}M_{tot}}\;Q^2\;-\;\frac{q Q x'}{2 M_{1}}, q\right) \nonumber \\&\qquad \times \left[ -i\;\varSigma \left( \frac{M_{1}}{M_{tot}}{\bar{P}}+{\bar{q}}-{\bar{s}},\frac{M_{1}}{M_{tot}}{\bar{K}}+{\bar{q}}+{\bar{s}}\right) \right] \nonumber \\&\qquad \times {\overline{D}}_{1}\left( -B_{2n}\;-\;\frac{m_{n}}{8M_{1}M_{tot}}\;Q^2\;+\;\frac{q Q x'}{2 M_{1}}, q\right) \nonumber \\&\qquad \times R_{1j}\left( -B_{2n}, d(q, s, x'), k\right) , \nonumber \\ \end{aligned}$$
(B.27)
$$\begin{aligned}&\chi ^{(c)}_{i}(\frac{m_{n}}{2M_{tot}}Q, p, q, x', \phi ) =\frac{1}{\sqrt{3}}\;\frac{m_{n}\;g_{1}^{2}}{\varLambda ^{2}}\left| \beta H_{0}(\varLambda )\right| d(q, s, x') \nonumber \\&\qquad \times R_{i1}\left( -B_{2n}, p, d(q, s, -x')\right) \nonumber \\&\qquad \times {\overline{D}}_{1}\Big (-B_{2n}\;-\;\frac{m_{n}}{8M_{1}M_{tot}}\;Q^2\;-\;\frac{q Q x'}{2 M_{1}}, q\Big )\nonumber \\&\qquad \times \Big [-i\;\varSigma \Big (\frac{M_{1}}{M_{tot}}{\bar{P}}+{\bar{q}}-{\bar{s}},\frac{M_{1}}{M_{tot}}{\bar{K}}+{\bar{q}}+{\bar{s}}\Big )\Big ]\nonumber \\&\qquad \times {\overline{D}}_{1}\Big (-B_{2n}\;-\;\frac{m_{n}}{8M_{1}M_{tot}}\;Q^2\;+\;\frac{q Q x'}{2 M_{1}}, q\Big ), \end{aligned}$$
(B.28)
$$\begin{aligned}&\chi ^{(c)}_{0}(\frac{m_{n}}{2M_{tot}}Q, q, x', \phi )=\frac{1}{\sqrt{3}}\frac{m_{n}g_{1}^{2}}{\varLambda ^{2}}\left| \beta H_{0}(\varLambda )\right| d(q, s, -x')\nonumber \\&\qquad \times {\overline{D}}_{1}\Big (-B_{2n}\;-\;\frac{m_{n}}{8M_{1}M_{tot}}\;Q^2\;-\;\frac{q Q x'}{2 M_{1}}, q\Big )\nonumber \\&\qquad \times \Big [-i\;\varSigma \Big (\frac{M_{1}}{M_{tot}}{\bar{P}}+{\bar{q}}-{\bar{s}},\frac{M_{1}}{M_{tot}}{\bar{K}}+{\bar{q}}+{\bar{s}}\Big )\Big ]\nonumber \\&\qquad \times {\overline{D}}_{1}\Big (-B_{2n}\;-\;\frac{m_{n}}{8M_{1}M_{tot}}\;Q^2\;+\;\frac{q Q x'}{2 M_{1}}, q\Big )\nonumber \\&\qquad \times \frac{1}{\sqrt{3}}\;\frac{m_{n}\;g_{1}^{2}}{\varLambda ^{2}}\;\left| \beta \;H_{0}(\varLambda )\right| \;d(q, s, x'). \nonumber \\ \end{aligned}$$
(B.29)

As it mentioned all calculations have been performed in Breit frame, so we have substituted \(E= -B_{2n}\) in Eqs. (B.27)–(B.29) and drop this energy variable in \(\mathbf {{\mathcal {G}}}^{irr}\) and matrix D in Eq. (B.25).

1.4 B.4 Contribution \({\mathcal {F}}_{E}^{(d)}\)

Diagram (d) in Fig. 5 is the same as diagram (c) by converting the \(n\alpha \) bubble to the vertex of photon-\(d_{1}\) coupling, therefore the contribution of the diagram (d) is given by

$$\begin{aligned} {\mathcal {F}}^{(d)}(Q^{2})= & {} \;\int _{0}^{\varLambda } \left( -\frac{p^{2}}{2\pi ^{2}}\right) \;dp\;\int _{0}^{\varLambda } \Big (-\frac{k^{2}}{2\pi ^{2}}\Big )\;dk \nonumber \\&\quad \times \mathbf {{\mathcal {G}}}^{irr}(p)^{T}\;D(p)\;\varUpsilon ^{(d)}(Q,p,k)\;D(k)\;\mathbf {{\mathcal {G}}}^{irr}(k)\nonumber \\&+2\int _{0}^{\varLambda } \Big (-\frac{p^{2}}{2\pi ^{2}}\Big )\;dp\;\mathbf {{\mathcal {G}}}^{irr}(p)^{T}\;D(p)\;\mathbf {\varUpsilon }^{(d)}(Q,p) \nonumber \\&+\varUpsilon ^{(d)}_{0}(Q), \end{aligned}$$
(B.30)

where

$$\begin{aligned} \varUpsilon ^{(d)}_{ij}(Q,p,k)= & {} \frac{1}{(2\pi )^{3}}\;\int _{0}^{\varLambda }q^{2}\;dq\;\int _{-1}^{1}dx'\;\int _{0}^{2\pi }d\phi \nonumber \\&\quad \times \chi ^{(d)}_{ij}\left( \frac{m_{n}}{2M_{tot}}Q, p, k, q, x', \phi \right) ,\nonumber \\ \mathbf {\varUpsilon }^{(d)}_{i}(Q,p)= & {} \frac{1}{(2\pi )^{3}}\;\int _{0}^{\varLambda }q^{2}\;dq\;\int _{-1}^{1}dx'\;\int _{0}^{2\pi }d\phi \nonumber \\&\quad \times \chi ^{(d)}_{i}\left( \frac{m_{n}}{2M_{tot}}Q, p, q, x', \phi \right) ,\nonumber \\ \varUpsilon ^{(d)}_{0}(Q)= & {} \frac{1}{(2\pi )^{3}}\;\int _{0}^{\varLambda }q^{2}\;dq\;\int _{-1}^{1}dx'\;\int _{0}^{2\pi }d\phi \nonumber \\&\quad \times \chi ^{(d)}_{0}\left( \frac{m_{n}}{2M_{tot}}Q, q, x', \phi \right) , \nonumber \\ \end{aligned}$$
(B.31)

with the following relations

$$\begin{aligned}&\chi ^{(d)}_{ij}\left( \frac{m_{n}}{2M_{tot}}Q, q, x', p, k\right) =R_{i1}\Big (-B_{2n}, p, d(q, s, -x')\Big )\nonumber \\&\qquad \times {\overline{D}}_{1}\Big (-B_{2n}\;-\;\frac{m_{n}}{8M_{1}M_{tot}}\;Q^2\;-\;\frac{q Q x'}{2 M_{1}}, q\Big )\nonumber \\&\qquad \times {\overline{D}}_{1}\Big (-B_{2n}\;-\;\frac{m_{n}}{8M_{1}M_{tot}}\;Q^2\;+\;\frac{q Q x'}{2 M_{1}}, q\Big )\nonumber \\&\qquad \times R_{1j}\Big (-B_{2n}, d(q, s, x'), k\Big ),\nonumber \\&\chi ^{(d)}_{i}\left( \frac{m_{n}}{2M_{tot}}Q, p, q, x', \phi \right) =\frac{1}{\sqrt{3}}\;\frac{m_{n}\;g_{1}^{2}}{\varLambda ^{2}}\;\left| \beta \;H_{0}(\varLambda )\right| \nonumber \\&\qquad \times d(q, s, x')\;R_{i1}\Big (-B_{2n}, p, d(q, s, -x')\Big )\nonumber \\&\qquad \times {\overline{D}}_{1}\Big (-B_{2n}\;-\;\frac{m_{n}}{8M_{1}M_{tot}}\;Q^2\;-\;\frac{q Q x'}{2 M_{1}}, q\Big )\nonumber \\&\qquad \times {\overline{D}}_{1}\Big (-B_{2n}\;-\;\frac{m_{n}}{8M_{1}M_{tot}}\;Q^2\;+\;\frac{q Q x'}{2 M_{1}}, q\Big ),\nonumber \\&\chi ^{(d)}_{0}\left( \frac{m_{n}}{2M_{tot}}Q, q, x', \phi \right) =\frac{1}{\sqrt{3}}\;\frac{m_{n}\;g_{1}^{2}}{\varLambda ^{2}}\;\left| \beta \;H_{0}(\varLambda )\right| \nonumber \\&\qquad \times d(q, s, -x')\nonumber \\&\qquad \times {\overline{D}}_{1}\Big (-B_{2n}\;-\;\frac{m_{n}}{8M_{1}M_{tot}}\;Q^2\;-\;\frac{q Q x'}{2 M_{1}}, q\Big )\nonumber \\&\qquad \times {\overline{D}}_{1}\Big (-B_{2n}\;-\;\frac{m_{n}}{8M_{1}M_{tot}}\;Q^2\;+\;\frac{q Q x'}{2 M_{1}}, q\Big )\nonumber \\&\qquad \times \frac{1}{\sqrt{3}}\;\frac{m_{n}\;g_{1}^{2}}{\varLambda ^{2}}\;\left| \beta \;H_{0}(\varLambda )\right| \;d(q, s, x'). \end{aligned}$$
(B.32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jesri, S., Moeini Arani, M. & Bayegan, S. Halo EFT calculation of charge form factor for two-neutron \({}^{6}\text {He}\) halo nucleus: two-body resonant P-wave interaction. Eur. Phys. J. A 57, 39 (2021). https://doi.org/10.1140/epja/s10050-021-00352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00352-8

Navigation