Skip to main content
Log in

Structure of Two-Neutron Halo in Light Exotic Nuclei

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Structure of two-neutron halo in light exotic nuclei is studied by a three-body model using the neutron–neutron interaction fixed at the low-energy scattering limit. The model is applied to the dripline nucleus \(^{22}\)C assuming a pure s-wave halo with “correlated” \(^{20}\)C-core, and a unique relation between two-neutron separation energy and halo radius is derived. It is also applied to \(^{29}\)F, where 2\(p_{3/2}\)-orbit is shown to be important for forming the halo. The estimated halo radii in \(^{22}\)C and \(^{29}\)F are found to be consistent with the recent experimental data. The halos in \(^{17}\)B and \(^{19}\)B are analyzed by the three-body model with mixed configurations of 2\(s_{1/2}^{2}\) and 1\(d_{5/2}^{2}\). The dominance of the d-orbit is found in \(^{17}\)B, while the s-orbit component is found to be about 40\(\%\) in \(^{19}\)B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Suzuki, T. Otsuka, C. Yuan, A. Navin, Two-neutron halo from the low-energy limit of neutron-neutron interaction: applications to drip-line nuclei \(^{22}\)C and \(^{24}\)O. Phys. Lett. B 753, 199 (2016)

    Article  ADS  Google Scholar 

  2. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. 1 (Benjamin, New York, 1969).

    MATH  Google Scholar 

  3. R. Machleid, High-precision charge-dependent Bonn nucleon-nucleon potential. Phys. Rev. C 63, 024001 (2001)

    Article  ADS  Google Scholar 

  4. N. Kobayashi et al., One- and two-neutron removal reactions from the most neutron-rich carbon isotopes. Phys. Rev. C 86, 054604 (2012)

    Article  ADS  Google Scholar 

  5. C. Yuan et al., Shell-model study of boron, carbon, nitrogen and oxygen isotopes with a monopole-based universal interaction. Phys. Rev. C 85, 064324 (2012)

    Article  ADS  Google Scholar 

  6. Y. Togano et al., Interaction cross section study of the two-neutron halo nucleus \(^{22}\)C. Phys. Lett. B 761, 412 (2016)

    Article  ADS  Google Scholar 

  7. A. Ozawa et al., Nuclear size and related topics. Nucl. Phys. A 693, 21 (2001)

    Article  Google Scholar 

  8. T. Suzuki et al, Formation of two-neutron halo in light drip-line nuclei from the low-energy neutron-neutron interaction, PoS INPC2016, 055 (2017)

  9. National Nuclear Data Center, http://www.ndc.bnl.gov/nudat2/

  10. S. Bagchi et al., Two-neutron halo is unveiled in \(^{29}\)F. Phys. Rev. Lett. 124, 222504 (2020)

    Article  ADS  Google Scholar 

  11. N. Tsunoda et al., Exotic neutron-rich medium-mass nuclei with realistic nuclear forces. Phys. Rev. C 95, 021304(R) (2017)

    Article  ADS  Google Scholar 

  12. D.R. Entem, R. Machleidt, Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001(R) (2003)

    Article  ADS  Google Scholar 

  13. K. Takayanagi, Effective Hamiltonian in the extended Krenciglowa-Kuo method. Nucl. Phys. A 864, 91 (2011)

    Article  ADS  Google Scholar 

  14. J. Fujita, H. Miyazawa, Pion theory of three-body forces. Prog. Theor. Phys. 17, 360 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  15. B.A. Brown, B.H. Wildenthal, Status of the nuclear shell model. Ann. Rev. Nucl. Part. Sci. 38, 29 (1988)

    Article  ADS  Google Scholar 

  16. Z.H. Yang et al., Quasifree neutron knockout reaction reveals a small s-orbital component in the Borromean nucleus \(^{17}\)B. Phys. Rev. Lett. 126, 082501 (2021)

    Article  ADS  Google Scholar 

  17. G. Audi et al., The Nubase evaluation of nuclear and decay properties. Nucl. Phys. A 624, 1 (1997)

    Article  ADS  Google Scholar 

  18. T. Suzuki et al., Momentum distribution of \(^{15}\)B fragments from the breakup of \(^{17}\)B. Phys. Rev. Lett. 89, 012501 (2002)

    Article  ADS  Google Scholar 

  19. L. Gaudefroy et al., Direct mass measurements of \(^{19}\)B, \(^{22}\)C, \(^{29}\)F, \(^{31}\)Ne, \(^{34}\)Na and other light exotic nuclei. Phys. Rev. Lett. 109, 202503 (2012)

    Article  ADS  Google Scholar 

  20. T. Suzuki et al., Nuclear radii of \(^{17,19}\)B and \(^{14}\)Be. Nucl. Phys. A 658, 313 (1999)

    Article  ADS  Google Scholar 

  21. K.J. Cook et al., Halo structure of the neutron-dripline nucleus \(^{19}\)B. Phys. Rev. Lett. 124, 212503 (2020)

    Article  ADS  Google Scholar 

  22. J. Casal, E. Garrido, Three-body structure of \(^{19}\)B: Finite-range effects in two-neutron halo nuclei. Phys. Rev. C 102, 051304(R) (2020)

    Article  ADS  Google Scholar 

  23. A. Spyrou et al., First evidence for a virtual \(^{18}\)B ground state. Phys. Lett. B 683, 129 (2010)

    Article  ADS  Google Scholar 

  24. E. Hiyama, R. Lazauskas, F. M. Marques, J. Carbonell, Modelling \(^{19}\)B as a \(^{17}\)B-n-n three-body system in the unitary limit, Phys. Rev. C 100, 011603 (R) (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Suzuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T., Otsuka, T. Structure of Two-Neutron Halo in Light Exotic Nuclei. Few-Body Syst 62, 32 (2021). https://doi.org/10.1007/s00601-021-01612-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01612-5

Navigation