Skip to main content
Log in

Longitudinal structure function from the parton parameterization

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We present a certain theoretical model to describe data based on the DGLAP evolution equations at low values of x. This model is based on a hard-pomeron exchange in the next-to-next-to-leading order of the perturbative theory. The behavior of the DIS cross section ratio \(R(x,Q^{2})\) and \(F_{L}(x,Q^{2})/F_{2}(x,Q^{2})\) is studied and compared with the experimental data. These behaviors are controlled by the color dipole model bound. These results show good agreement with the DIS experimental data throughout the low values of x. The results can be applied to the LHeC region for analyses of ultra-high-energy processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a phenomenological study and no experimental data has been listed. But compared with the experimental data.]

References

  1. G.G. Callan, D. Gross, Phys. Lett. B 22, 156 (1969)

    Google Scholar 

  2. L.A. Anchordoqui, C. Garca Canal, J.F. Soriano, arXiv:1902.10134 [hep-ph]

  3. M. Klein, Ann. Phys. 528, 138 (2016)

    MathSciNet  Google Scholar 

  4. P. Monaghan et al., Phys. Rev. Lett. 110, 152002 (2013)

    ADS  Google Scholar 

  5. V.Andreev et al. [H1 Collaboration], Eur. Phys. J. C 74, 2814 (2014)

  6. D.I. Kazakov et al., Phys. Rev. Lett. 65, 1535 (1990)

    ADS  Google Scholar 

  7. S. Moch, J.A.M. Vermaseren, A. Vogt, Phys. Lett. B 606, 123 (2005)

    ADS  Google Scholar 

  8. M. Gluck, C. Pisano, E. Reya, Phys. Rev. D 77, 074002 (2008)

    ADS  Google Scholar 

  9. A.V. Kotikov, G. Parente, J. Exp. Theor. Phys. 85, 17 (1997)

    ADS  Google Scholar 

  10. A.V. Kotikov, G. Parente, Mod. Phys. Lett. A 12, 963 (1997)

    ADS  Google Scholar 

  11. G.R. Boroun, B. Rezaei, Eur. Phys. J. C 72, 2221 (2012)

    ADS  Google Scholar 

  12. B. Rezaei, G.R. Boroun, Nucl. Phys. A 857, 42 (2011)

    ADS  Google Scholar 

  13. G.R. Boroun, B. Rezaei, J.K. Sarma, Int. J. Mod. Phys. A 29, 1450189 (2014)

    ADS  Google Scholar 

  14. N. Baruah, N.M. Nath, J.K. Sarma, Int. J. Theor. Phys. 52, 2464 (2013)

    Google Scholar 

  15. G.R. Boroun, Phys. Rev. C 97, 015206 (2018)

    ADS  Google Scholar 

  16. B. Rezaei, G.R. Boroun, Phys. Rev. C 101, 045202 (2020)

    ADS  Google Scholar 

  17. L.P. Kaptari et al., JETP Lett. 109, 281 (2019)

    ADS  Google Scholar 

  18. L.P. Kaptari et al., Phys. Rev. D 99, 096019 (2019)

    ADS  Google Scholar 

  19. M.M. Block et al., Phys. Rev. D 84, 094010 (2011)

    ADS  Google Scholar 

  20. M.M. Block et al., Phys. Rev. D 89, 094027 (2014)

    ADS  Google Scholar 

  21. G. Altarelli, G. Martinelli, Phys. Lett. B 76, 89 (1978)

    ADS  Google Scholar 

  22. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  23. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    ADS  Google Scholar 

  24. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  25. A. Donnachie, P.V. Landshoff, Phys. Lett. B 437, 408 (1998)

    ADS  Google Scholar 

  26. A. Donnachie, P.V. Landshoff, Phys. Lett. B 550, 160 (2002)

    ADS  Google Scholar 

  27. A. Donnachie, P.V. Landshoff, Phys. Lett. B 533, 277 (2002)

    ADS  Google Scholar 

  28. P.V. Landshoff, arXiv[hep-ph]:0203084(2002)

  29. G.R. Boroun, B. Rezaei, Phys. Atom. Nucl. 71(6), 1077 (2008)

    ADS  Google Scholar 

  30. B.G. Shaikhatdenov, A.V. Kotikov, V.G. Krivokhizhin, G. Parente, Phys. Rev. D 81, 034008 (2010)

    ADS  Google Scholar 

  31. M. Devee, R. Baishya, J.K. Sarma, Eur. Phys. J. C 72, 2036 (2012)

    ADS  Google Scholar 

  32. M.M. Block et al., Phys. Rev. D 83, 054009 (2011)

    ADS  Google Scholar 

  33. M.M. Block et al., Eur. Phys. J. C 69, 425 (2010)

    ADS  Google Scholar 

  34. A. Cafarella et al., Nucl. Phys. B 748, 253 (2006)

    ADS  Google Scholar 

  35. A. Cafarella et al., Comput. Phys. Commun. 179, 665 (2008)

    ADS  MathSciNet  Google Scholar 

  36. G.R. Boroun, B. Rezaei, Eur. Phys. J. C 73, 2412 (2013)

    ADS  Google Scholar 

  37. S. Zarrin, G.R. Boroun, Nucl. Phys. B 922, 126 (2017)

    ADS  Google Scholar 

  38. F. Taghavi-Shahri, A. Mirjalili, M.M. Yazdanpanah, Eur. Phys. J. C 71, 1590 (2011)

    ADS  Google Scholar 

  39. H. Khanpour et al., Phys. Rev. C 95, 035201 (2017)

    ADS  Google Scholar 

  40. E.G. Floratos, C. Kounnas, R. Lacaze, Nucl. Phys. B 192, 417 (1981)

    ADS  Google Scholar 

  41. J. Blumlein, V. Ravindran, W. van Neerven, Nucl. Phys. B 586, 349 (2000)

    ADS  Google Scholar 

  42. S. Catani, F. Hautmann, Nucl. Phys. B 427, 475 (1994)

    ADS  Google Scholar 

  43. C.G. Callan Jr., Phys. Rev. D 2, 1541 (1970)

    ADS  Google Scholar 

  44. K. Symanzik, Comm. Math. Phys. 18, 227 (1970)

    ADS  MathSciNet  Google Scholar 

  45. K. Symanzik, Comm. Math. Phys. B39, 49 (1971)

    ADS  Google Scholar 

  46. G. Parisi, Phys. Lett. B 39, 643 (1972)

    ADS  Google Scholar 

  47. D.I. Kazakov A.V. Kotikov, Nucl. Phys. B307, 721 (1988) Erratum:[Nucl.Phys.B345, 299(1990)]

  48. D.I. Kazakov, A.V. Kotikov, Phys. Lett. B 291, 171 (1992)

    ADS  Google Scholar 

  49. E.B. Zijlstra, W.L.van Neerven, Nucl. Phys. B 383, 525 (1992)

  50. E.B. Zijlstra, W.L. van Neerven, Phys. Lett. B 272, 127 (1991)

    ADS  Google Scholar 

  51. E.B. Zijlstra, W.L. van Neerven, Phys. Lett. B 273, 476 (1991)

    ADS  Google Scholar 

  52. W.L. van Neerven, A. Vogt, Phys. Lett. B 490, 111 (2000)

    ADS  Google Scholar 

  53. A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 691, 129 (2004)

    ADS  Google Scholar 

  54. A.A. Godizov, Phys. Rev. D 96, 034023 (2017)

    ADS  Google Scholar 

  55. M.M. Block et al., Phys. Rev. D 77, 094003 (2008)

    ADS  Google Scholar 

  56. A.D. Martin, W.J. Stirling, R.S. Thorne, Phys. Lett. B 635, 305 (2006)

    ADS  Google Scholar 

  57. K. Golec-Biernat, A.M. Stasto, Phys. Rev. D 80, 014006 (2009)

    ADS  Google Scholar 

  58. Stanley J. Brodsky et al., JETP Lett. 70, 155 (1999)

    ADS  Google Scholar 

  59. B. Rezaei, G.R. Boroun, Eur. Phys. J. A 55, 66 (2019)

    ADS  Google Scholar 

  60. G.R. Boroun, Eur. Phys. J. Plus 135, 68 (2020)

    Google Scholar 

  61. C. Adloff et al. [H1 Collaboration], Phys. Lett. B 520, 183(2001)

  62. N.N. Nikolaev, B.G. Zakharov, Phys. Lett. B 332, 184 (1994)

    ADS  Google Scholar 

  63. N.N. Nikolaev, V.R. Zoller, Phys. Atom. Nucl. 73, 672 (2010)

    ADS  Google Scholar 

  64. B. Rezaei, G.R. Boroun, Phys. Lett. B 692, 247 (2010)

    ADS  Google Scholar 

  65. M. Froissart, Phys. Rev. 123, 1053 (1961)

    ADS  Google Scholar 

  66. M.M. Block et al., Phys. Rev. D 88, 014006 (2013)

    ADS  Google Scholar 

  67. M.M. Block, F. Halzen, Phys. Rev. D 70, 091901 (2004)

    ADS  Google Scholar 

  68. F.D. Aaron et al., H1 and ZEUS Collaborations. JHEP 1001, 109 (2010)

    ADS  Google Scholar 

  69. A.Y. Illarionov, A.V. Kotikov, G. Parente Bermudez, Phys. Part. Nucl. 39, 307 (2008)

    Google Scholar 

  70. S. Chekanov et al., ZEUS Collaboration. Eur. Phys. J. C 21, 443 (2001)

  71. A.D. Martin et al., Phys. Letts. B604, 61 (2004)

    ADS  Google Scholar 

  72. M. Niedziela, M. Praszalowicz, Acta Phys. Polon. B 46, 2019 (2015)

    ADS  MathSciNet  Google Scholar 

  73. C. Ewerz et al., Phys.lett.B 720, 181 (2013)

    ADS  Google Scholar 

  74. V. Tvaskis et al., Phys. Rev. C 97, 045204 (2018)

    ADS  Google Scholar 

  75. V. Tvaskis et al., Phys. Rev. Lett. 98, 142301 (2007)

    ADS  Google Scholar 

  76. F.D. Aaron et al. [H1 Collaboration], Phys. Lett. B 665, 139(2008)

  77. F.D. Aaron et al., Eur. Phys. J. C 71, 1579 (2011)

    ADS  Google Scholar 

  78. C. Ewerz, O. Nachtmann, Phys. Lett. B 648, 279 (2007)

    ADS  Google Scholar 

  79. H. Abromowicz et al. [ZEUS Collaboration], Phys. Rev. D 9, 072002(2014)

Download references

Acknowledgements

The authors are thankful to the Razi University for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Boroun.

Additional information

Communicated by Andre Peshier.

Appendices

Appendix A

The coefficient functions for \(F_{L}\) have the following forms [7]:

At LO:

$$\begin{aligned} c^{1}_{L,g}= & {} 8n_{f}z(1-z),\nonumber \\ c^{1}_{L,q}= & {} 4C_{F}z. \end{aligned}$$
(28)

At NLO:

$$\begin{aligned} c^{2}_{L,g}= & {} n_{f}\{(94.74-49.20z)z_{1}L_{1}^2+864.8z_{1}L_{1}\nonumber \\&+1161zL_{1}L_{0}+60.06zL_{0}^2+39.66z_{1}L_{0}\nonumber \\&-5.333(1/z-1)\},\nonumber \\ c^{2}_{L,q}= & {} 128/9zL_{1}^2-46.50zL_{1}-84.094L_{0}L_{1}-37.338\nonumber \\&+89.53z+33.82z^2+zL_{0}(32.90+18.41L_{0})\nonumber \\&-128/9L_{0}-0.012\delta (z_{1})+16/27n_{f}(6zL_{1}\nonumber \\&-12zL_{0}-25z+6)\nonumber \\&+n_{f}\{(15.94-5.212z)z_{1}^2L_{1}+(0.421+1.520z)L_{0}^2\nonumber \\&+28.09z_{1}L_{0}-(2.371/z-19.27)z_{1}^3\}. \end{aligned}$$
(29)

At NNLO:

$$\begin{aligned} c^{3}_{L,g}= & {} n_{f}\{(144L_{1}^4-47024/27L_{1}^3+6319L_{1}^2+53160L_{1})z_{1}\nonumber \\&+72549L_{0}L_{1}+88238L_{0}^2L_{1}+(3709-33514z\nonumber \\&-9533z^2)z_{1}+66773zL_{0}^2-1117L_{0}+45.37L_{0}^2\nonumber \\&-5360/27L_{0}^3-(2044.70z_{1}+409.506L_{0})1/z\}\nonumber \\&+n_{f}^2\{(32/3L_{1}^3-1216/9L_{1}^2-592.3L_{1}\nonumber \\&+1511zL_{1})z_{1}+311.3L_{0}L_{1}+14.24L_{0}^2L_{1}\nonumber \\&+(577.3-729z)z_{1}+30.78zL_{0}^3+366L_{0}+1000/9L_{0}^2\nonumber \\&+160/9L_{0}^3+88.50371/zz_{1}\}\nonumber \\&+fl_{11}^{g}n_{f}^2\{(-0.0105L_{1}^3+1.550L_{1}^2+19.72zL_{1}\nonumber \\&-66.745z+0.615z^2)z_{1}+20/27zL_{0}^4+(280/81\nonumber \\&+2.260z)zL_{0}^3-(15.40-2.201z)zL_{0}^2+2.260z)zL_{0}^3\nonumber \\&-(71.66-0.121z)zL_{0}\},\nonumber \\ c^{3}_{L,q}= & {} 512/27L_{1}^4-177.40L_{1}^3+650.6L_{1}^2-2729L_{1}\nonumber \\&-2220.5-7884z+4168z^2-(844.7L_{0}\nonumber \\&+517.3L_{1})L_{0}L_{1}+(195.6L_{1}-125.3)z_{1}L_{1}^3\nonumber \\&+208.3zL_{0}^3-1355.7L_{0}-7456/27L_{0}^2 -1280/81L_{0}^3\nonumber \\&+0.113\delta (z_{1})+n_{f}\{1024/81L_{1}^3-112.35L_{1}^2+344.1L_{1}\nonumber \\&+408.4-9.345z -919.3z^2+(239.7+20.63L_{1})z_{1}L_{1}^2\nonumber \\&+(887.3+294.5L_{0}-59.14L_{1})L_{0}L_{1}-1792/81zL_{0}^3\nonumber \\&+200.73L_{0}+64/3L_{0}^2+0.006\delta (z_{1})\}+n_{f}^2\{3zL_{1}^2\nonumber \\&+(6-25z)L_{1}-19+(317/6-12\zeta _{2})z -6zL_{0}L_{1}\nonumber \\&+6zLi_{2}(x))+9zL_{0}^2-(6-50z)L_{0}\}64/81\nonumber \\&+fl_{11}^{ns}n_{f}\{(107+321.05z-54.62z^2)z_{1}-26.717\nonumber \\&+9.773L_{0}+(363.8+68.32L_{0})zL_{0}\nonumber \\&-320/81L_{0}^2(2+L_{0})\}z\nonumber \\&+n_{f}\{(1568/27L_{1}^3-3968/9L_{1}^2+5124L_{1})z_{1}^2\nonumber \\&+(2184L_{0}+6059z_{1})L_{0}L_{1} -(795.6+1036z)z_{1}^2\nonumber \\&-143.6z_{1}L_{0}+2848/9L_{0}^2-1600/27L_{0}^3\nonumber \\&-(885.53z_{1}+182L_{0})1/zz_{1}\} +n_{f}^2\{(-32/9L_{1}^2\nonumber \\&+29.52L_{1})z_{1}^2+(35.18L_{0}+73.06z_{1})L_{0}L_{1}\nonumber \\&-35.24zL_{0}^2-(14.16-69.84z)z_{1}^2 -69.41z_{1}L_{0}\nonumber \\&-128/9L_{0}^2+40.2391/zz_{1}^2\}+fl_{11}^{ps}n_{f}\{(107\nonumber \\&+321.05z-54.62z^2)z_{1}-26.717+9.773L_{0}+(363.8\nonumber \\&+68.32L_{0})zL_{0}-320/81L_{0}^2(2+L_{0})\}z. \end{aligned}$$
(30)

In these equations we have used the abbreviations \(z_{1}=1-z,~L_{0}=\ln {z}\) and \(L_{1}=\ln {z_{1}}\). For the SU(N) gauge group, we have \(C_{A}=N\), \(C_{F}=(N^{2}-1)/2N\), \(T_{F}=n_{f}T_{R}\), and \(T_{R}=1/2\) where \(C_{F}\) and \(C_{A}\) are the color Cassimir operators in QCD. Also the new charge factors are defined by \(fl_{11}^{ns}=3<e>\), \(fl_{11}^{g}=<e>^{2}/<e^{2}>\) and \(fl_{11}^{ps}=fl_{11}^{g}-fl_{11}^{ns}\).

Appendix B

The LO up to NNLO splitting functions for singlet and gluon distribution functions are as follows [52, 53]. At LO:

$$\begin{aligned}&P^{\mathrm{LO}}_{qq}(z)=C_{F}\left[ \frac{1+z^{2}}{(1-z)_{+}}+\frac{3}{2}\delta (1-z)\right] .\nonumber \\&P^{\mathrm{LO}}_{qg}(z)=\frac{1}{2}(z^{2}+(1-z)^{2}).\nonumber \\&P^{\mathrm{LO}}_{gq}(z)=C_{F}\frac{1+(1-z)^2}{z}.\nonumber \\&P^{\mathrm{LO}}_{gg}(z)=2C_{A}\left( \frac{z}{(1-z)_{+}}+\frac{(1-z)}{z}+z(1-z)\right) \nonumber \\&+\delta (1-z)\frac{(11C_{A}-4n_{f}T_{R})}{6}. \end{aligned}$$
(31)

The convolution integrals which contain a plus prescription, \(()_{+}\), can be easily calculated by

$$\begin{aligned} \int _{x}^{1}\frac{dy}{y}f\left( \frac{x}{y}\right) _{+}g(y)= & {} \int _{x}^{1}\frac{dy}{y}f\left( \frac{x}{y}\right) \left[ g(y)-\frac{x}{y}g(x)\right] \nonumber \\&-g(x)\int _{0}^{x}f(y)dy. \end{aligned}$$
(32)

At NLO:

$$\begin{aligned} P_{qq}^{\mathrm{NLO}}= & {} (C_F)^2(-1+z+(1/2-3/2z)\ln (z)\nonumber \\&-1/2(1+z)\ln (z)^{2}-(3/2\ln (z)\nonumber \\&+2\ln (z)\ln (1-z))p_{qq}(z)\nonumber \\&+2p_{qq}(-z)S_2(z))+C_F C_A(14/3(1-z)\nonumber \\&+(11/6\ln (z)+1/2\ln (z)^{2}\nonumber \\&+67/18-\pi ^2/6)p_{qq}(z)-p_{qq}(-z)S_2(z))\nonumber \\&+C_FT_F(-16/3+40/3z+(10z+16/3z^2+2)\nonumber \\&\ln (z)-112/9z^2+40/(9z)-2(1+z)\ln (z)^{2}\nonumber \\&-(10/9+2/3\ln (z))p_{qq}(z)),\nonumber \\ P_{qg}^{\mathrm{NLO}}= & {} C_FT_F(4-9z-(1-4z)\ln (z)-(1-2z) \ln (z)^{2}\nonumber \\&+4\ln (1-z)+(2\ln ((1-z)/z)^{2}-4ln((1-z)/z)\nonumber \\&-2/3\pi ^2+10)P_{qg}(z))\nonumber \\&+C_AT_F(182/9+14/9z+40/(9z)\nonumber \\&+(136/3z-38/3)\ln (z)-4\ln (1-z)\nonumber \\&-(2+8z)\ln (z)^{2}+2P_{qg}(-z)S_2(z)\nonumber \\&+(-\ln (z)^{2}+44/3\ln (z)-2\ln (1-z)^{2}\nonumber \\&+4\ln (1-z)+\pi ^2/3-218/9)P_{qg}(z)),\nonumber \\ P_{gq}^{\mathrm{NLO}}= & {} C_F^2(-5/2-7z/2+(2+7/2z)\ln (z)\nonumber \\&-(1-z/2)ln(z)^{2} -2z\ln (1-z)-(3\ln (1-z)\nonumber \\&+\ln (1-z)^{2})P_{gq}(z))+C_FC_A(28/9+65/18z\nonumber \\&+44/9z^2 -(12+5z+8/3z^2)\ln (z)+(4+z)\ln (z)^{2}\nonumber \\&+2z\ln (1-z)+S_2(z)P_{gq}(-z)+(1/2-2\ln (z)\nonumber \\&\ln (1-z)+1/2\ln (z)^{2}+11/3\ln (1-z)\nonumber \\&+\ln (1-z)^{2}-\pi ^2/6)P_{gq}(z))\nonumber \\&+C_FT_F(-4/3z-(20/9+4/3\ln (1-z))P_{gq}(z)),\nonumber \\ P_{gg}^{\mathrm{NLO}}= & {} C_FT_F(-16+8z+20/3z^2+4/(3z)\nonumber \\&-(6+10z)\ln (z)-(2+2z)\nonumber \\&\ln (z)^{2})+C_AT_F(2-2z\nonumber \\&+26/9(z^2-1/z)-4/3(1+z)\ln (z)-20/9P_{gg}(z))\nonumber \\&+C_A^2(27/2(1-z)+26/9(z^2-1/z)\nonumber \\&-(25/3-11/3z+44/3z^2)\ln (z)+4(1+z)\nonumber \\&\ln (z)^{2}+2P_{gg}(-z)S_2(z)\nonumber \\&+(67/9-4\ln (z)\ln (1-z)\nonumber \\&+\ln (z)^{2}-\pi ^2/3)P_{gg}(z)), \end{aligned}$$
(33)

where

$$\begin{aligned}&p_{qq}(z)=2/(1-z)-1-z,\nonumber \\&p_{qq}(-z)=2/(1+z)-1+z,\nonumber \\&P_{qg}(z)=z^2+(1-z)^2,\nonumber \\&P_{qg}(-z)=z^2+(1+z)^2,\nonumber \\&P_{gq}(z)=(1+(1-z)^2)/z,\nonumber \\&P_{gq}(-z)=-(1+(1+z)^2)/z,\nonumber \\&P_{gg}(z)=1/(1-z)+1/z-2+z(1-z),\nonumber \\&P_{gg}(-z)=1/(1+z)-1/z-2-z(1+z),\nonumber \\&S_2(z)=\int _{1/(1+z)}^{z/(1+z)}1/y\ln ((1-y)/y)dy. \end{aligned}$$
(34)

At NNLO:

$$\begin{aligned} P_{qq}^{\mathrm{NNLO}}= & {} (n_f(-5.926L_{1}^3-9.751L_{1}^2-72.11L_{1} +177.4\nonumber \\&+392.9z-101.4z^2-57.04L_{0}L_{1}-661.6L_{0}\nonumber \\&+131.4L_{0}^2-400/9L_{0}^3+160/27L_{0}^4\nonumber \\&-506/z-3584/271/zL_{0})\nonumber \\&+n_f^2(1.778L_{1}^2+5.944L_{1}\nonumber \\&+100.1-125.2z+49.26z^2-12.59z^3\nonumber \\&-1.889L_{0}L_{1}+61.75L_{0}\nonumber \\&+17.89L_{0}^2+32/27L_{0}^3\nonumber \\&+256/811/z))(1-z).\nonumber \\ P_{qg}^{\mathrm{NNLO}}= & {} n_f(100/27L_{1}^4-70/9L_{1}^3-120.5L_{1}^2+104.42L_{1}\nonumber \\&+2522-3316z+2126z^2\nonumber \\&+L_{0}L_{1}(1823-25.22L_{0})-252.5zL_{0}^3\nonumber \\&+424.9L_{0} +881.5L_{0}^2-44/3L_{0}^3 +536/27L_{0}^4\nonumber \\&-1268.31/z-896/31/zL_{0})+n_f^2(20/27L_{1}^3\nonumber \\&+200/27L_{1}^2-5.496L_{1}-252+158z+145.4z^2\nonumber \\&-139.28z^3-L_{0}L_{1}(53.09+80.616L_{0})\nonumber \\&-98.07zL_{0}^2 +11.70zL_{0}^3-254L_{0}-98.80L_{0}^2\nonumber \\&-376/27L_{0}^3-16/9L_{0}^4+1112/2431/z).\nonumber \\ P_{gq}^{\mathrm{NNLO}}= & {} 400/81L_{1}^4+2200/27L_{1}^3+606.3L_{1}^2\nonumber \\&+2193L_{1}-4307\nonumber \\&+489.3z+1452z^2+146z^3-447.3L_{0}^2L_{1}\nonumber \\&-972.9zL_{0}^2+4033L_{0}-1794L_{0}^2+1568/9L_{0}^3\nonumber \\&-4288/81L_{0}^4+6163.11/z+1189.31/zL_{0}\nonumber \\&+n_f(-400/81L_{1}^3-68.069L_{1}^2-296.7L_{1}\nonumber \\&-183.8 +33.35z-277.9z^2+108.6zL_{0}^2\nonumber \\&-49.68L_{0}L_{1}+174.8L_{0}+20.39L_{0}^2+704/81L_{0}^3\nonumber \\&+128/27L_{0}^4-46.411/z+71.0821/zL_{0})\nonumber \\&+n_f^2(96/27L_{1}^2(1/z-1+1/2z)\nonumber \\&+320/27L_{1}(1/z-1+4/5z)\nonumber \\&-64/27(1/z-1-2z)), \nonumber \\ P_{gg}^{\mathrm{NNLO}}= & {} 2643.524D_{0}+4425.894\delta (1-z)\nonumber \\&+3589L_{1}-20852\nonumber \\&+3968z-3363z^2+4848z^3\nonumber \\&+L_{0}L_{1}(7305+8757L_{0})+274.4L_{0}-7471L_{0}^2\nonumber \\&+72L_{0}^3-144L_{0}^4+142141/z+2675.81/zL_{0}\nonumber \\&+n_f(-412.142D_{0}-528.723\delta (1-z)-320L_{1}\nonumber \\&-350.2+755.7z-713.8z^2+559.3z^3\nonumber \\&+L_{0}L_{1}(26.15-808.7L_{0})+1541L_{0}\nonumber \\&+491.3L_{0}^2+832/9L_{0}^3\nonumber \\&+512/27L_{0}^4+182.961/z\nonumber \\&+157.271/zL_{0})+n_f^2(-16/9D_{0}\nonumber \\&+6.4630\delta (1-z)-13.878\nonumber \\&+153.4z-187.7z^2+52.75z^3\nonumber \\&-L_{0}L_{1}(115.6-85.25z+63.23L_{0})-3.422L_{0}\nonumber \\&+9.680L_{0}^2-32/27L_{0}^3-680/2431/z), \end{aligned}$$
(35)

where \(D_{0}=1/(1-z)\).

Appendix C

We present here the kernels for the quark and gluon sectors, denoted by \(\Phi \) and \(\Theta \), respectively, at LO up to NNLO which we used in Eqs. (1921). We have

$$\begin{aligned} \Theta _{gq}(x,Q^{2})= & {} P_{gq}(x,\alpha _{s}){\odot } x^{\lambda _{s}},\nonumber \\ \Theta _{qg}(x,Q^{2})= & {} P_{qg}(x,\alpha _{s}){\odot } x^{\lambda _{g}},\nonumber \\ \Phi _{gg}(x,Q^{2})= & {} P_{gg}(x,\alpha _{s}){\odot } x^{\lambda _{g}},\nonumber \\ \Phi _{qq}(x,Q^{2})= & {} P_{qq}(x,\alpha _{s}){\odot } x^{\lambda _{s}}, \end{aligned}$$
(36)

where the splitting functions expanded into one, two and three loops correction in accordance with Appendix B. The required leading-order approximation of the singlet kernels are written

$$\begin{aligned} \Phi _{qq}(x,Q^{2})= & {} \frac{\alpha _{s}}{4\pi }\left\{ 4+\frac{16}{3}\ln \left( \frac{1-x}{x}\right) \right. \nonumber \\&\left. +\frac{16}{3}\int _{x}^{1}{\frac{z^{\lambda _{s}}-{z}^{-1}}{1-z}dz}\right. \nonumber \\&\left. -\frac{8}{3}\int _{x}^{1}{(1+z)z^{\lambda _{s}}dz}\right\} ,\nonumber \\ \Theta _{qg}(x,Q^{2})= & {} \frac{\alpha _{s}}{4\pi }\frac{20}{9}\int _{x}^{1}{(z^2+(1-z)^2)z^{\lambda _{g}}dz}. \end{aligned}$$
(37)

The longitudinal kernels at the low-x limit are given by

$$\begin{aligned} I_{L,q}(x,Q^{2})= & {} C_{L,q}(x,\alpha _{s}){\odot } x^{\lambda _{s}},\nonumber \\ I_{L,g}(x,Q^{2})= & {} C_{L,g}(x,\alpha _{s}){\odot } x^{\lambda _{g}}. \end{aligned}$$
(38)

Here the longitudinal coefficient functions \(C_{L,a}(x,\alpha _{s}),~a=q,~g\) are the singlet and gluon functions known perturbatively up to the first few orders in the running coupling constant \(\alpha _{s}\) and can be written as

$$\begin{aligned} C_{L,a}(x,\alpha _{s})= & {} \frac{\alpha _{s}}{4\pi }c^{1}_{L,a}(x)+\left( \frac{\alpha _{s}}{4\pi }\right) ^{2} c^{2}_{L,a}(x)\nonumber \\&\quad +\left( \frac{\alpha _{s}}{4\pi }\right) ^{3} c^{3}_{L,a}(x), \end{aligned}$$
(39)

where \(c_{L,a}(x)\) are given in Appendix A. The required leading order approximation of the longitudinal singlet and gluon coefficient functions are written as

$$\begin{aligned} I_{L,q}(x,Q^{2})= & {} \frac{\alpha _{s}}{4\pi }\int _{x}^{1}8n_{f}(1-z)z^{\lambda _{s}+1}dz,\nonumber \\ I_{L,g}(x,Q^{2})= & {} \frac{\alpha _{s}}{4\pi }\int _{x}^{1}4C_{F}z^{\lambda _{g}+1}dz. \end{aligned}$$
(40)

Appendix D

The proton structure function parameterized with a global fit function [66] to the HERA combined data for \(F^{\gamma p}_{ 2} (x,Q^{2})\) for \(0.85< Q^{2} < 3000~ GeV^{2}\) and \(x< 0.1\), which ensures that the saturated Froissart \(\ln ^{2}(1/x)\) behavior dominates at low x. This global fit takes the form

$$\begin{aligned} F^{\gamma p}_{ 2} (x,Q^{2})= & {} (1- x)\left[ \frac{F_{P}}{1 -x_{P}} + A(Q^{2})\ln \left( \frac{x_{P}}{ x}\frac{1 - x}{ 1 - x_{P}}\right) \right. \nonumber \\&\left. +B(Q^{2}) \ln ^{2}\left( \frac{x_{P}}{ x}\frac{1 - x}{ 1 - x_{P}}\right) \right] , \end{aligned}$$
(41)

where

$$\begin{aligned} A(Q^{2}) = a_{0} + a_{1} {\ln }Q^{2} + a_{2} {\ln }^{2} Q^{2} \end{aligned}$$

and

$$\begin{aligned} B(Q^{2}) = b_{0} + b_{1} {\ln }Q^{2} + b_{2} {\ln }^{2} Q^{2}.\nonumber \end{aligned}$$

The fitted parameters are tabulated in Table 1. At low x (or large \(\nu = \ln (1/x)\)), the global fit becomes a quadratic polynomial in \(\nu \), \( {\widehat{F}}^{\gamma p}_{ 2} (\nu ,Q^{2}){\rightarrow } C_{0f} (Q^{2}) + C_{1f} (Q^{2})\nu + C_{2f} (Q^{2})\nu ^{2} + {\widehat{O}}(\nu )\), where the coefficient functions are defined in Ref. [66].

Table 1 Parameters of Eq. (41), resulting from a global fit to the HERA combined data

This form for \(F_{2}^{{\gamma }p}\) (i.e. Eq. (41)) describes the HERA data well, but the model does not have the properties necessary for the \(\gamma ^{*}-p\) reduced cross section to extend smoothly to the \(Q^{2}=0\) limit. The authors in Ref. [20] provide good fits to the HERA data at low x and large \(Q^{2}\) values. With respect to the Block–Halzen [67] fit, the explicit expression for the proton structure function in a range of the kinematical variables x and \(Q^{2}\), \(x<0.001\) and \(0.15~\mathrm {GeV}^{2}<Q^{2}<3000~\mathrm {GeV}^{2}\), is defined by the following form:

$$\begin{aligned} F^{\gamma p}_{ 2}(x,Q^{2})= & {} D(Q^{2})(1- x)^{n}\left[ C(Q^{2})+A(Q^{2})\ln \left( \frac{1}{x}\frac{Q^{2}}{Q^{2}+\mu ^{2}}\right) \right. \nonumber \\&\left. +B(Q^{2})\ln ^{2}\left( \frac{1}{x}\frac{Q^{2}}{Q^{2}+\mu ^{2}}\right) \right] , \end{aligned}$$
(42)

where

$$\begin{aligned} A(Q^{2})= & {} a_{0} + a_{1} {\ln }\left( 1+\frac{Q^{2}}{\mu ^{2}}\right) + a_{2}{\ln }^{2}\left( 1+\frac{Q^{2}}{\mu ^{2}}\right) ,\nonumber \\ B(Q^{2})= & {} b_{0} + b_{1} {\ln }\left( 1+\frac{Q^{2}}{\mu ^{2}}\right) + b_{2}{\ln }^{2}\left( 1+\frac{Q^{2}}{\mu ^{2}}\right) ,\nonumber \\ C(Q^{2})= & {} c_{0} + c_{1} {\ln }\left( 1+\frac{Q^{2}}{\mu ^{2}}\right) ,\nonumber \\ D(Q^{2})= & {} \frac{Q^{2}\left( Q^{2}+\lambda M^{2}\right) }{(Q^{2}+M^{2})^2}. \end{aligned}$$
(43)

Here M is the effective mass and \(\mu ^{2}\) is a scale factor. The additional parameters with their statistical errors are given in Table 2.

Table 2 The effective parameters at low x for \(0.15~\mathrm {GeV}^{2}<Q^{2}<3000~\mathrm {GeV}^{2}\) provided by the following values. The fixed parameters are defined by the Block–Halzen fit to the real photon–proton cross section as \(M^{2}=0.753 \pm 0.068~ \mathrm {GeV}^{2}\), \(\mu ^2 = 2.82 \pm 0.290~ \mathrm {GeV}^{2}\) and \(c_{0} = 0.255 \pm 0.016\) [20]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, B., Boroun, G.R. Longitudinal structure function from the parton parameterization . Eur. Phys. J. A 56, 262 (2020). https://doi.org/10.1140/epja/s10050-020-00267-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00267-w

Navigation