Skip to main content
Log in

Nature of \(\varvec{S}\)-wave \(\varvec{NN}\) interaction and dibaryon production at nucleonic resonance thresholds

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Phase shifts and inelasticity parameters for NN scattering in the partial-wave channels \({}^3S_1\)\({}^3D_1\) and \({}^1S_0\) at energies \(T_\mathrm{lab}\) from zero to about 1 GeV are described within a unified NN potential model assuming the formation of isoscalar and isovector dibaryon resonances near the \(NN^*(1440)\) threshold. Evidence for these near-threshold resonances is actually found in the recent WASA experiments on single- and double-pion production in NN collisions. There, the excitation of the Roper resonance \(N^*(1440)\) exhibits a structure in the energy dependence of the total cross section which corresponds to the formation of dibaryon states with \(I(J^\pi )=0(1^+)\) and \(1(0^+)\) at the \(NN^*(1440)\) threshold. These two S-wave dibaryon resonances may provide new insight into the nature of the strong NN interaction at low and intermediate energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No new experimental data have been listed in the paper.]

Notes

  1. For the coupled spin-triplet channels \(^3S_1\)\({}^3D_1\), we use a bit lower cutoff parameter \(\varLambda _{\pi NN}=0.62\) GeV (instead of 0.65 GeV employed in Ref. [21]) which allows for a better fit of the \({}^3D_1\) phase shift.

  2. In the quark shell-model language, the \(N^*(1440)\) structure corresponds to the mixture of the 3q configurations 0s\((1p)^2\) and \((0s)^2\)–2s, both carrying the \(2\hbar \omega \) excitation.

  3. In particular, a resonance state in the NN channel may have a noticeable overlap with the state \(|\phi _0\rangle \). The detailed study of this formalism will be published elsewhere.

  4. The difference between the resonance parameters found here for the \(^1S_0\) channel from the preliminary ones obtained in Ref. [20] is due to the use of the finite \(\lambda _0\) in the orthogonalizing potential \(V_\mathrm{orth}\).

  5. Here the partial amplitude A is defined as \(A=({S_L-1})/{2i}\), where \(S_L\) is the S-matrix for the given orbital angular momentum L.

References

  1. H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17, 48 (1935)

    Google Scholar 

  2. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994)

    ADS  Google Scholar 

  3. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    ADS  Google Scholar 

  4. R. Machleidt, Phys. Rev. C 63, 024001 (2001)

    ADS  Google Scholar 

  5. E. Eppelbaum, J. Gegelia, Eur. Phys. J. A 41, 341 (2009)

    ADS  Google Scholar 

  6. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011)

    ADS  Google Scholar 

  7. M. Baldo, O. Elgaroey, L. Engvik, M. Hjorth-Jensen, H.-J. Schulze, Phys. Rev. C 58, 1921 (1998)

    ADS  Google Scholar 

  8. A. Faessler, F. Fernandes, G. Lübeck, K. Shimizu, Phys. Lett. B 112, 201 (1982)

    ADS  Google Scholar 

  9. A. Faessler, F. Fernandes, G. Lübeck, K. Shimizu, Nucl. Phys. A 402, 555 (1983)

    ADS  Google Scholar 

  10. K. Shimizu, Rep. Prog. Phys. 52, 1 (1989)

    ADS  Google Scholar 

  11. Y. Yamauchi, A. Buchmann, A. Faessler, A. Arima, Nucl. Phys. A 526, 495 (1991)

    ADS  Google Scholar 

  12. F. Stancu, S. Pepin, L.Y. Glozman, Phys. Rev. C 56, 2779 (1997) [Erratum ibid. 59, 1219 (1999)]

  13. M. Beyer, H.J. Weber, Phys. Lett. B 146, 383 (1984)

    ADS  Google Scholar 

  14. V.I. Kukulin, in Proceedings of the XXXIII Winter School PIYaF (Gatchina, 1998), Saint-Petersburg, 1999, p. 207

  15. V.I. Kukulin, I.T. Obukhovsky, V.N. Pomerantsev, A. Faessler, J. Phys. G 27, 1851 (2001)

    ADS  Google Scholar 

  16. V.I. Kukulin, I.T. Obukhovsky, V.N. Pomerantsev, A. Faessler, Int. J. Mod. Phys. E 11, 1 (2002)

    ADS  Google Scholar 

  17. V.I. Kukulin et al., Ann. Phys. 325, 1173 (2010)

    ADS  Google Scholar 

  18. H. Clement, Prog. Part. Nucl. Phys. 93, 195 (2017)

    ADS  Google Scholar 

  19. V.I. Kukulin, V.N. Pomerantsev, O.A. Rubtsova, Few-Body Syst. 60, 48 (2019)

    ADS  Google Scholar 

  20. V.I. Kukulin, V.N. Pomerantsev, O.A. Rubtsova, M.N. Platonova, Phys. At. Nucl. 82, 934 (2019)

    Google Scholar 

  21. V.I. Kukulin et al., Phys. Lett. B 801, 135146 (2020)

    Google Scholar 

  22. R. Aaij et al., Phys. Rev. Lett. 122, 222001 (2019)

    ADS  Google Scholar 

  23. M. Bashkanov et al., Phys. Rev. Lett. 102, 052301 (2009)

    ADS  Google Scholar 

  24. P. Adlarson et al., Phys. Rev. Lett. 106, 242302 (2011)

    ADS  Google Scholar 

  25. P. Adlarson et al., Phys. Rev. Lett. 112, 202301 (2014)

    ADS  Google Scholar 

  26. P. Adlarson et al., Phys. Rev. C 90, 035204 (2014)

    ADS  Google Scholar 

  27. C.H. Oh, R.A. Arndt, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 56, 635 (1997) and references therein

  28. P. Adlarson et al., Phys. Rev. Lett. 121, 052001 (2018)

    ADS  Google Scholar 

  29. P. Adlarson et al., Phys. Rev. C 99, 025201 (2019)

    ADS  Google Scholar 

  30. F.J. Dyson, N.-H. Xuong, Phys. Rev. Lett. 13, 815 (1964) [Erratum ibid. 14, 339 (1965)]

  31. A. Gal, H. Garcilazo, Nucl. Phys. A 928, 73 (2014)

    ADS  Google Scholar 

  32. V. Komarov et al., Phys. Rev. C 93, 065206 (2016)

    ADS  Google Scholar 

  33. M.N. Platonova, V.I. Kukulin, Phys. Rev. D 94, 054039 (2016)

    ADS  Google Scholar 

  34. P. Adlarson et al., Phys. Lett. B 774, 599 (2017)

    ADS  Google Scholar 

  35. T. Skorodko et al., Phys. Lett. B 679, 30 (2009)

    ADS  Google Scholar 

  36. Yu.A. Kuperin, K.A. Makarov, S.P. Merkuriev, A.K. Motovilov, B.S. Pavlov, J. Math. Phys. 31, 1681 (1990)

  37. Yu.A. Kuperin, K.A. Makarov, S.P. Merkuriev, A.K. Motovilov, B.S. Pavlov, Sov. J. Theor. Math. Phys. 75, 431 (1988)

  38. Yu.A. Kuperin, K.A. Makarov, S.P. Merkuriev, A.K. Motovilov, B.S. Pavlov, Sov. J. Theor. Math. Phys. 76, 242 (1988)

  39. Yu.A. Kuperin, K.A. Makarov, S.P. Merkuriev, A.K. Motovilov, Sov. J. Nucl. Phys. 48, 358 (1988)

  40. P.J. Mulders, A.T.M. Aerts, J.J. de Swart, Phys. Rev. D 21, 2653 (1980)

    ADS  Google Scholar 

  41. L.A. Kondratyuk, B.V. Martemyanov, M.G. Shchepkin, Sov. J. Nucl. Phys. 45, 776 (1987)

    Google Scholar 

  42. V.M. Krasnopolsky, V.I. Kukulin, Sov. J. Nucl. Phys. 20, 470 (1975)

    Google Scholar 

  43. V.I. Kukulin et al., J. Phys. G 4, 1409 (1978)

    ADS  Google Scholar 

  44. V.I. Kukulin, V.N. Pomerantsev, Ann. Phys. (N.Y.) 111, 330 (1978)

  45. V.I. Kukulin, M.N. Platonova, Phys. At. Nucl. 76, 1465 (2013)

    Google Scholar 

  46. All SAID PWA solutions can be accessed via the official SAID website: http://gwdac.phys.gwu.edu

  47. M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

  48. M. Ablikim et al. (BES Collaboration), Phys. Rev. Lett. 97, 062001 (2006)

  49. H.P. Morsch et al., Phys. Rev. Lett. 69, 1336 (1992)

    ADS  Google Scholar 

  50. H.P. Morsch, P. Zupranski, Phys. Rev. C 61, 024002 (1999)

    ADS  Google Scholar 

  51. L.G. Dakhno et al., Phys. Lett. B 114, 409 (1982)

    ADS  Google Scholar 

  52. L. Alvarez-Ruso, E. Oset, E. Hernandez, Nucl. Phys. A 633, 519 (1998) and priv. comm

  53. P. Adlarson et al., Phys. Lett. B 706, 256 (2012)

    ADS  Google Scholar 

  54. J. Johanson et al., Nucl. Phys. A 712, 75 (2002)

    ADS  Google Scholar 

  55. F. Shimizu et al., Nucl. Phys. A 386, 571 (1982)

    ADS  Google Scholar 

  56. C.D. Brunt et al., Phys. Rev. 187, 1856 (1969)

    ADS  Google Scholar 

  57. T. Skorodko et al., Phys. Lett. B 695, 115 (2011)

    ADS  Google Scholar 

  58. X. Cao, B.-S. Zou, H.-S. Xu, Phys. Rev. C 81, 065201 (2010)

    ADS  Google Scholar 

  59. T. Skorodko et al., Eur. Phys. J. A 35, 317 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to L. Alvarez-Ruso for using his code and to I.T. Obukhovsky for fruitful discussions of the microscopic quark model. The work has been supported by DFG (grants CL 214/3-2 and 3-3) and the Russian Foundation for Basic Research, Grants nos. 19-02-00011 and 19-02-00014. M.N.P. also appreciates support from the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Pomerantsev.

Additional information

Communicated by Vittorio Somá

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukulin, V.I., Rubtsova, O.A., Platonova, M.N. et al. Nature of \(\varvec{S}\)-wave \(\varvec{NN}\) interaction and dibaryon production at nucleonic resonance thresholds. Eur. Phys. J. A 56, 229 (2020). https://doi.org/10.1140/epja/s10050-020-00236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00236-3

Navigation