Skip to main content
Log in

Naturalness in nuclear effective field theories

  • Regular Article -Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Nuclear effective field theories (EFTs) have been developed over the last quarter-century with considerable impact on the description of light and even medium-mass nuclei. At the core of any EFT is a systematic expansion of observables, which is usually obtained from a rule based on an assumption of naturalness. I discuss naturalness in the context of the relatively weak binding of nuclei, where discrete scale invariance plays a role in the emergence of complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theory paper and has no experimental data (duh!).]

Notes

  1. Just so the true believers burn me at the stake for the right reason: I ain’t saying the tower never ends, only that we’ll not know for sure.

  2. In the particle physics literature, where dimensional regularization is almost exclusively used, the physical breakdown scale is normally referred to as the “cutoff” of the theory. Unfortunately dimensional regularization is not well adapted to nonperturbative problems where loops do not factorize, as in nuclear physics (except for a very specific situation mentioned below). Here I reserve “cutoff” to the arbitrary momentum (or coordinate) cutoff introduced by the regularization procedure.

  3. This estimate gives the correct position of the T-matrix pole for \(A=2\) and ensures that all nucleons contribute equally to the binding energy when \(A\gg 2\).

  4. When nonperturbative physics is involved, the calculation of quantum corrections is often limited to numerics and one cannot write a simple analytical formula for the renormalized LEC. In nuclear physics, this limitation causes an inordinate amount of confusion.

  5. “Naive” perhaps due to the modesty of the authors of Ref. [5].

  6. Note that this is not the only possible fine tuning in this toy model. One can also make \(-r_0/R\) large by fine tuning \(a_2/R\) to be small, that is, dialing a zero of the amplitude to the threshold region. The low-energy EFT for this situation is a Pionless EFT with a different scaling of \(C_{n}\) [15] than discussed in the following.

References

  1. M. Dine, Ann. Rev. Nucl. Part. Sci. 65, 43 (2015)

    ADS  Google Scholar 

  2. S. Weinberg, Physica A 96, 327 (1979)

    ADS  Google Scholar 

  3. H.-W. Hammer, S. König, U. van Kolck, arXiv:1906.12122 [nucl-th]

  4. R. Machleidt, Int. J. Mod. Phys. E 26, 1730005 (2017)

    ADS  Google Scholar 

  5. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    ADS  Google Scholar 

  6. H. Georgi, L. Randall, Nucl. Phys. B 276, 241 (1986)

    ADS  Google Scholar 

  7. S. Weinberg, Phys. Rev. Lett. 63, 2333 (1989)

    ADS  Google Scholar 

  8. H. Georgi, Phys. Lett. B 298, 187 (1993)

    ADS  Google Scholar 

  9. U. van Kolck, arXiv:2003.06721 [nucl-th]

  10. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    ADS  Google Scholar 

  11. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    ADS  Google Scholar 

  12. U. van Kolck, Lect. Notes Phys. 513, 62 (1998)

    ADS  Google Scholar 

  13. D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998)

    ADS  Google Scholar 

  14. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998)

    ADS  Google Scholar 

  15. U. van Kolck, Nucl. Phys. A 645, 273 (1999)

    ADS  Google Scholar 

  16. S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, J. Phys. G 43, 055106 (2016)

    ADS  Google Scholar 

  17. S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 118, 202501 (2017)

    ADS  Google Scholar 

  18. S. König, J. Phys. G 44, 064007 (2017)

    ADS  Google Scholar 

  19. U. van Kolck, Few-Body Syst. 58, 112 (2017)

    ADS  Google Scholar 

  20. S. König, arXiv:1910.12627 [nucl-th]

  21. P. Nelson, Am. Sci. 73, 60 (1985)

    ADS  Google Scholar 

  22. G.F. Giudice, In *Kane, Gordon (ed.), Pierce, Aaron (ed.): Perspectives on LHC physics* 155-178, [arXiv:0801.2562 [hep-ph]]

  23. A. Grinbaum, Found. Phys. 42, 615 (2012)

    ADS  Google Scholar 

  24. J.D. Wells, Stud. Hist. Phil. Sci. B 49, 102 (2015)

    Google Scholar 

  25. P. Williams, Stud. Hist. Phil. Sci. B 51, 82 (2015)

    Google Scholar 

  26. S. Hossenfelder, arXiv:1801.02176 [physics.hist-ph]

  27. J. Bain, Found. Phys. 49, 898 (2019)

    ADS  MathSciNet  Google Scholar 

  28. J.D. Wells, Found. Phys. 49, 991 (2019)

    ADS  MathSciNet  Google Scholar 

  29. P. Williams, Found. Phys. 49, 1022 (2019)

    ADS  MathSciNet  Google Scholar 

  30. A. Borrelli, E. Castellani, Found. Phys. 49, 860 (2019)

    ADS  MathSciNet  Google Scholar 

  31. P.A.M. Dirac, Nature 139, 323 (1937)

    ADS  Google Scholar 

  32. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    ADS  Google Scholar 

  33. M.J.G. Veltman, Acta Phys. Polon. B 12, 437 (1981)

    Google Scholar 

  34. C.P. Burgess,. arXiv:1309.4133 [hep-th]

  35. G. ’t Hooft, NATO Sci. Ser. B 59 (1980) 135

  36. J.M. Charap, Phys. Rev. D 2 (1970) 1554; Addendum: [Phys. Rev. D 3 (1971) 1998]

  37. J. Honerkamp, K. Meetz, Phys. Rev. D 3, 1996 (1971)

    ADS  Google Scholar 

  38. I.S. Gerstein, R. Jackiw, S. Weinberg, B.W. Lee, Phys. Rev. D 3, 2486 (1971)

    ADS  MathSciNet  Google Scholar 

  39. V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008)

    ADS  Google Scholar 

  40. U. van Kolck, arXiv:1902.03141 [nucl-th]

  41. E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

    ADS  Google Scholar 

  42. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    ADS  Google Scholar 

  43. T.D. Cohen, B.A. Gelman, U. van Kolck, Phys. Lett. B 588, 57 (2004)

    ADS  Google Scholar 

  44. E. Braaten, M. Kusunoki, D. Zhang, Ann. Phys. 323, 1770 (2008)

    ADS  Google Scholar 

  45. L.H. Thomas, Phys. Rev. 47, 903 (1935)

    ADS  Google Scholar 

  46. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463 (1999)

    ADS  Google Scholar 

  47. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 646, 444 (1999)

    ADS  Google Scholar 

  48. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 676, 357 (2000)

    ADS  Google Scholar 

  49. H.-W. Hammer, T. Mehen, Phys. Lett. B 516, 353 (2001)

    ADS  Google Scholar 

  50. P.F. Bedaque, G. Rupak, H.W. Grießhammer, H.-W. Hammer, Nucl. Phys. A 714, 589 (2003)

    ADS  Google Scholar 

  51. L. Platter, C. Ji, D.R. Phillips, Phys. Rev. A 79, 022702 (2009)

    ADS  Google Scholar 

  52. C. Ji, D.R. Phillips, Few Body Syst. 54, 2317 (2013)

    ADS  Google Scholar 

  53. L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Rev. A 70, 052101 (2004)

    ADS  Google Scholar 

  54. L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Lett. B 607, 254 (2005)

    ADS  Google Scholar 

  55. I. Stetcu, B.R. Barrett, U. van Kolck, Phys. Lett. B 653, 358 (2007)

    ADS  Google Scholar 

  56. H.-W. Hammer, L. Platter, Eur. Phys. J. A 32, 113 (2007)

    ADS  Google Scholar 

  57. J. Kirscher, H.W. Grießhammer, D. Shukla, H.M. Hofmann, Eur. Phys. J. A 44, 239 (2010)

    ADS  Google Scholar 

  58. J. Kirscher, N. Barnea, D. Gazit, F. Pederiva, U. van Kolck, Phys. Rev. C 92, 054002 (2015)

    ADS  Google Scholar 

  59. B. Bazak, M. Eliyahu, U. van Kolck, Phys. Rev. A 94, 052502 (2016)

    ADS  Google Scholar 

  60. L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, U. van Kolck, Phys. Lett. B 772, 839 (2017)

  61. B. Bazak, J. Kirscher, S. König, M. Pavón Valderrama, N. Barnea, U. van Kolck, Phys. Rev. Lett. 122, 143001 (2019)

  62. P.F. Bedaque, U. van Kolck, Phys. Lett. B 428, 221 (1998)

    ADS  Google Scholar 

  63. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. C 58, R641 (1998)

    ADS  Google Scholar 

  64. J. Vanasse, Phys. Rev. C 88, 044001 (2013)

    ADS  Google Scholar 

  65. A.C. Phillips, Nucl. Phys. A 107, 209 (1968)

    ADS  Google Scholar 

  66. J.A. Tjon, Phys. Lett. 56B, 217 (1975)

    ADS  Google Scholar 

  67. S. Nakaichi, Y. Akaishi, H. Tanaka, T.K. Lim, Phys. Lett. A 68, 36 (1978)

    ADS  Google Scholar 

  68. S. Nakaichi, T.K. Lim, Y. Akaishi, H. Tanaka, J. Chem. Phys. 71, 4430 (1979)

    ADS  Google Scholar 

  69. T.K. Lim, S. Nakaichi, Y. Akaishi, H. Tanaka, Phys. Rev. A 22, 28 (1980)

    ADS  Google Scholar 

  70. A. Bansal, S. Binder, A. Ekström, G. Hagen, G.R. Jansen, T. Papenbrock, Phys. Rev. C 98, 054301 (2018)

    ADS  Google Scholar 

  71. A. Kievsky, M. Viviani, D. Logoteta, I. Bombaci, L. Girlanda, Phys. Rev. Lett. 121, 072701 (2018)

    ADS  Google Scholar 

  72. M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. C 100, 034004 (2019)

    ADS  Google Scholar 

  73. C.R. Hagen, Phys. Rev. D 5, 377 (1972)

    ADS  Google Scholar 

  74. T. Mehen, I.W. Stewart, M.B. Wise, Phys. Lett. B 474, 145 (2000)

    ADS  MathSciNet  Google Scholar 

  75. D. Sornette, Phys. Rept. 297, 239 (1998)

    ADS  Google Scholar 

  76. J. Carlson, S. Gandolfi, U. van Kolck, S.A. Vitiello, Phys. Rev. Lett. 119, 223002 (2017)

    ADS  Google Scholar 

  77. A. Deltuva, Phys. Rev. A 82, 040701 (2010)

    ADS  Google Scholar 

  78. V.R. Pandharipande, J.G. Zabolitzky, S.C. Pieper, R.B. Wiringa, U. Helmbrecht, Phys. Rev. Lett. 50, 1676 (1983)

    ADS  Google Scholar 

  79. W.G. Dawkins, J. Carlson, U. van Kolck, A. Gezerlis, arXiv:1908.04288 [cond-mat.quant-gas]

  80. V. Efimov, Phys. Lett. 33B, 563 (1970)

    ADS  Google Scholar 

  81. V.N. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971)

    Google Scholar 

  82. W. Schöllkopf, J.P. Toennies, J. Chem. Phys. 104, 1155 (1996)

    ADS  Google Scholar 

  83. M. Kunitski et al., Science 348, 551 (2015)

    ADS  Google Scholar 

  84. G. Rupak, A. Vaghani, R. Higa, U. van Kolck, Phys. Lett. B 791, 414 (2019)

    ADS  MathSciNet  Google Scholar 

  85. J. von Stecher, J. Phys. B 43, 101002 (2010)

    ADS  Google Scholar 

  86. M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. A 84, 052503 (2011)

    ADS  Google Scholar 

  87. J. von Stecher, Phys. Rev. Lett. 107, 200402 (2011)

    Google Scholar 

  88. M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. A 86, 042513 (2012)

    ADS  Google Scholar 

  89. Y. Horinouchi, M. Ueda, Phys. Rev. A 94, 050702 (2016)

    ADS  Google Scholar 

  90. F. Ferlaino et al., Phys. Rev. Lett. 102, 140401 (2009)

    ADS  Google Scholar 

  91. C.A. Bertulani, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 712, 37 (2002)

    ADS  Google Scholar 

  92. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003)

    ADS  Google Scholar 

  93. D.B. Kaplan, Nucl. Phys. B 494, 471 (1997)

    ADS  Google Scholar 

  94. A. Nogga, R.G.E. Timmermans, U. van Kolck, Phys. Rev. C 72, 054006 (2005)

    ADS  Google Scholar 

  95. S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire, U. van Kolck, Phys. Rev. A 64, 042103 (2001)

    ADS  Google Scholar 

  96. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 478, 629 (1996)

    ADS  Google Scholar 

  97. S. Fleming, T. Mehen, I.W. Stewart, Nucl. Phys. A 677, 313 (2000)

    ADS  Google Scholar 

  98. D.B. Kaplan, arXiv:1905.07485 [nucl-th]

  99. S.R. Beane, P.F. Bedaque, M.J. Savage, U. van Kolck, Nucl. Phys. A 700, 377 (2002)

    ADS  Google Scholar 

Download references

Acknowledgements

I thank Matt Baumgart, Ozan Erdogan, and Jaber Balal Habashi for useful discussions. This material is based upon work supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics, under award DE-FG02-04ER41338 and by the European Union Research and Innovation program Horizon 2020 under Grant No. 654002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. van Kolck.

Additional information

Communicated by T. Duguet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Kolck, U. Naturalness in nuclear effective field theories. Eur. Phys. J. A 56, 97 (2020). https://doi.org/10.1140/epja/s10050-020-00092-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00092-1

Navigation