Skip to main content
Log in

Simulation of a recoil mass spectrometer for measurement of differential quasi-elastic scattering cross sections

A semi-microscopic Monte Carlo code

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We report development of a semi-microscopic Monte Carlo code to calculate the transmission efficiency of a recoil mass spectrometer for quasi-elastic scattering. Realistic distributions of angle, energy and charge state of the forward-moving target-like ions are generated event by event. Particle trajectories are calculated employing first-order ion-optical transfer matrices. We present results for two test reactions, viz.\(^{16}\)O+\(^{116}\)Sn and \(^{58}\)Ni+\(^{116}\)Sn assuming Rutherford scattering at projectile energies near the Coulomb barrier. This work has an important application in determining barrier distributions from quasi-elastic back-scattering measurements employing recoil mass spectrometers. The code can also be utilized to simulate multi-nucleon transfer reactions and adapted for other similar recoil separators because of its modular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. M. Thomas, Cormier, Recoil mass spectrometers in low-energy nuclear physics. Ann. Rev. Nucl. Part. Sci. 37, 537–565 (1987)

    Article  Google Scholar 

  2. N. Cary, Davids, Recoil separators. Nucl. Instrum Methods B 204, 124–128 (2003)

    Article  Google Scholar 

  3. M. Leino, Gas-filled separators - an overview. Nucl. Instrum Methods B 204, 129–137 (2003)

    Article  ADS  Google Scholar 

  4. E. Christoph, Düllmann, physical separators for the heaviest elements. Nucl. Instrum Methods B 266, 4123–4130 (2008)

    Article  Google Scholar 

  5. Chris Ruiz, Uwe Greife, Ulrike Hager, Recoil separators for radiative capture using radioactive ion beams. Eur. Phys. J. A 50, 99 (2014)

    Article  ADS  Google Scholar 

  6. P. Spolaore, J.D. Larson, C. Signorini, S. Beghini, Z. Xi-Kai, S. Hou-Zhi, A recoil mass spectrometer for the XTU tandem at LNL. Nucl. Instrum. Methods A 238, 381–392 (1985)

    Article  ADS  Google Scholar 

  7. C. Signorini, S. Beghini, A. Dal Bello, G. Montagnoli, F. Scarlassara, G.F. Segato, F. Soramel, D. Ackermann, L. Corradi, A. Facco, H. Moreno, L. Müller, D.R. Napoli, G.F. Prete, Performance of the LNL recoil mass spectrometer. Nucl. Instrum Methods A 339, 531–542 (1994)

    Article  ADS  Google Scholar 

  8. P. Spolaore, D. Ackermann, P. Bednarczyk, G. De Angelis, D. Napoli, C. Rossi Alvarez, D. Bazzacco, R. Burch, L. Müller, G.F. Segato, F. Scarlassara, Coupling of the recoil mass spectrometer CAMEL to the \(\gamma \)-ray spectrometer GASP. Nucl. Instrum Methods A 359, 500–505 (1995)

    Article  ADS  Google Scholar 

  9. C.N. Davids, J.D. Larson, The argonne fragment mass analyzer. Nucl. Instrum. Methods B 40–41, 1224–1228 (1989)

    Article  ADS  Google Scholar 

  10. C.N. Davids, B.B. Back, K. Bindra, D.J. Henderson, W. Kutschera, T. Lauritsen, Y. Nagame, P. Sugathan, A.V. Ramayya, W.B. Walters, Startup of the fragment mass analyzer at ATLAS. Nucl. Instrum. Methods B 70, 358–365 (1992)

    Article  ADS  Google Scholar 

  11. B.B. Back, D.J. Blumenthal, C.N. Davids, D.J. Henderson, R.H. Hermann, C.L. Jiang, H.T. Penttilä, A.H. Wuosmaa, Transport efficiency of the Argonne fragment mass analyzer. Nucl. Instrum. Methods A 379, 206–211 (1996)

    Article  ADS  Google Scholar 

  12. T.M. Cormier, J.D. Cole, J.H. Hamilton, A.V. Ramaya, A large-solid-angle high-resolution recoil mass spectrometer optimized for use with Gammasphere. Nucl. Instrum Methods A 297, 199–212 (1990)

    Article  ADS  Google Scholar 

  13. J.D. Cole, T.M. Cormier, J.H. Hamilton, A.V. Ramayya, A recoil mass spectrometer for HHIRF Nucl. Instrum Methods B 70, 343–357 (1992)

    Article  ADS  Google Scholar 

  14. C.J. Gross, T.N. Ginter, D. Shapira, W.T. Milner, J.W. McConnell, A.N. James, J.W. Johnson, J. Mas, P.F. Mantica, R.L. Auble, J.J. Das, J.L. Blankenship, J.H. Hamilton, R.L. Robinson, Y.A. Akovali, C. Baktash, J.C. Batchelder, C.R. Bingham, M.J. Brinkman, H.K. Carter, R.A. Cunningham, T. Davinson, J.D. Fox, A. Galindo-Uribarri, R. Grzywacz, J.F. Liang, B.D. MacDonald, J. MacKenzie, S.D. Paul, A. Piechaczek, D.C. Radford, A.V. Ramayya, W. Reviol, D. Rudolph, K. Rykaczewski, K.S. Toth, W. Weintraub, C. Williams, P.J. Woods, C.-H. Yu, E.F. Zganjar, Performance of the Recoil mass spectrometer and its detector systems at the holifield radioactive Ion beam facility. Nucl. Instrum Methods A 450, 12–29 (2000)

    Article  ADS  Google Scholar 

  15. A.K. Sinha, N. Madhavan, J.J. Das, P. Sugathan, D.O. Kataria, A.P. Patro, G.K. Mehta, Heavy ion reaction analyzer (HIRA): a recoil mass separator facility at NSC. Nucl. Instrum. Methods A 339, 543–549 (1994)

    Article  ADS  Google Scholar 

  16. D.O. Kataria, J.J. Das, N. Madhavan, P. Sugathan, A.K. Sinha, G. Dayanand, M.C. Radhakrishna, A.M. Vinodkumar, K.M. Varier, Mahendrajit Singh, N.V.S.V. Prasad, A modular focal plane detector system for the heavy ion reaction analyzer at NSC, New Delhi. Nucl. Instrum. Methods A 372, 311–317 (1996)

    Article  ADS  Google Scholar 

  17. S. Nath, A Monte Carlo code to calculate transmission efficiency of HIRA. Nucl. Instrum. Methods A 576, 403–410 (2007)

    Article  ADS  Google Scholar 

  18. H. Ikezoe, Y. Nagame, T. Ikuta, S. Hamada, I. Nishinaka, T. Ohtsuki, JAERI recoil mass separator. Nucl. Instrum. Methods A 376, 420–427 (1996)

    Article  ADS  Google Scholar 

  19. H. Ikezoe, T. Ikuta, S. Mitsuoka, S. Hamada, Y. Nagame, I. Nishinaka, Y. Tsukada, Y. Oura, T. Ohtsuki, The feature of the JAERI recoil mass separator. Nucl. Instrum. Methods B 126, 340–343 (1997)

    Article  ADS  Google Scholar 

  20. T. Kuzumaki, H. Ikezoe, S. Mitsuoka, T. Ikuta, S. Hamada, Y. Nagame, I. Nishinaka, T. Ohtsuki, O. Hashimoto, Transport efficiency of JAERI recoil mass separator. Nucl. Instrum. Methods A 437, 107–113 (1999)

    Article  ADS  Google Scholar 

  21. Barry Davids, Cary N. Davids, EMMA: A recoil mass spectrometer for ISAC-II at TRIUMF Nucl. Instrum. Methods A 544, 565–576 (2005)

    Article  ADS  Google Scholar 

  22. B. Davids, M. Williams, N.E. Esker, M. Alcorta, D. Connolly, B.R. Fulton, K. Hudson, N. Khan, O.S. Kirsebom, J. Lighthall, P. Machule, Initial operation of the recoil mass spectrometer EMMA at the ISAC-II facility of TRIUMF. Nucl. Instrum. Methods A 930, 191–195 (2019)

    Article  ADS  Google Scholar 

  23. T.M. Cormier, P.M. Stwertka, A nuclear reaction product mass spectrometer. Nucl. Instrum. Methods 184, 423–430 (1981)

    Article  ADS  Google Scholar 

  24. T.M. Cormier, M.G. Herman, B.S. Lin, P.M. Stwertka, Performance of a recoil mass spectrometer. Nucl. Instrum. Methods 212, 185–193 (1983)

    Article  Google Scholar 

  25. S.Mandal Khushboo, S. Nath, N. Madhavan, J. Gehlot, A. Jhingan, Neeraj Kumar, Tathagata Banerjee, Gurpreet Kaur, K. Rojeeta Devi, A. Banerjee, Neelam T. Varughese, Davinder Siwal, R. Garg, Ish Mukul, M‘. Saxena, S. Verma, S. Kumar, B.R. Behera, P. Verma, Relationship between and effect of inelastic excitations and transfer channels on sub-barrier fusion enhancement. Phys. Rev. C 96, 014614 (2017)

    Article  ADS  Google Scholar 

  26. B.B. Back, H. Esbensen, C.L. Jiang, K.E. Rehm, Recent developments in heavy-ion fusion reactions. Rev. Mod. Phys. 86, 317–360 (2014)

    Article  ADS  Google Scholar 

  27. N. Rowley, G.R. Satchler, P.H. Stelson, On the distribution of barriers interpretation of heavy-ion fusion. Phys. Lett. B 254, 25–29 (1991)

    Article  ADS  Google Scholar 

  28. H. Timmers, J.R. Leigh, M. Dasgupta, D.J. Hinde, R.C. Lemmon, J.C. Mein, C.R. Morton, J.O. Newton, N. Rowley, Probing fusion barrier distributions with quasi-elastic scattering. Nucl. Phys. A 584, 190–204 (1995)

    Article  ADS  Google Scholar 

  29. M.V. Andres, N. Rowley, M.A. Nagarajan, Effect of deformation on the elastic and quasielastic scattering of heavy ions near the Coulomb barrier. Phys. Lett. B 202, 292–295 (1988)

    Article  ADS  Google Scholar 

  30. A.T. Kruppa, P. Romain, M.A. Nagarajan, N. Rowley, Effect of multiphonon coupling on heavy-ion fusion. Nucl. Phys. A 560, 845–862 (1993)

    Article  ADS  Google Scholar 

  31. K. Washiyama, K. Hagino, M. Dasgupta, Probing surface diffuseness of nucleus-nucleus potential with quasielastic scattering at deep sub-barrier energies. Phys. Rev. C 73, 034607 (2006)

    Article  ADS  Google Scholar 

  32. H.M. Jia, C.J. Lin, F. Yang, X.X. Xu, H.Q. Zhang, Z.H. Liu, Z.D. Wu, L. Yang, N.R. Ma, P.F. Bao, L.J. Sun, Extracting the hexadecapole deformation from backward quasi-elastic scattering. Phys. Rev. C 90, 031601(R) (2014)

    Article  ADS  Google Scholar 

  33. R.R. Betts, P.M. Evans, C.N. Pass, N. Poffé, A.E. Smith, L. Stuttgé, J.S. Lilley, D.W. Banes, K.A. Connell, J. Simpson, J.R.H. Smith, A.N. James, B.R. Fulton, Measurement of sub-barrier transfer reactions for \(^{58}\)Ni+Sn using a recoil mass separator. Phys. Rev. Lett. 59, 978 (1987)

    Article  ADS  Google Scholar 

  34. S. Nath, A Monte Carlo C-code for calculating transmission efficiency of recoil separators and viewing residue trajectories. Comput. Phys. Commun. 179, 492–500 (2008)

    Article  ADS  Google Scholar 

  35. S. Nath, TERS v2.0: an improved version of TERS. Comput. Phys. Commun. 180, 2392–2393 (2009)

    Article  ADS  Google Scholar 

  36. Sunil Kalkal, S. Mandal, N. Madhavan, A. Jhingan, E. Prasad, Rohit Sandal, S. Nath, J. Gehlot, Ritika Garg, Gayatri Mohanto, Mansi Saxena, Savi Goyal, S. Verma, B.R. Behera, Suresh Kumar, U.D. Pramanik, A.K. Sinha, R. Singh, Multinucleon transfer reactions for the \(^{28}\text{ Si }+^{90,94}\text{ Zr }\) systems in the region below and near the Coulomb barrier. Phys. Rev. C 83, 054607 (2011)

    Article  ADS  Google Scholar 

  37. J.J. Das, P. Sugathan, N. Madhavan, P.V. Madhusudhana Rao, A. Jhingan, T. Varughese, S. Barua, S. Nath, A.K. Sinha, B. Kumar, J. Zacharias, Production of light radioactive ion beams (RIB) using inverse kinematics. Nucl. Instrum. Methods B 241, 953–958 (2005)

    Article  ADS  Google Scholar 

  38. http://www.astro.caltech.edu/~tjp/pgplot/

Download references

Acknowledgements

One of the authors (R. B.) acknowledges Council of Scientific and Industrial Research (CSIR), New Delhi for financial support via grant no. CSIR/09/760(0030)/2017-EMR-I. The authors are thankful to Dr. G. O. Rodrigues for useful discussion on ion-optical calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nath.

Additional information

Communicated by K. Blaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Nath, S. Simulation of a recoil mass spectrometer for measurement of differential quasi-elastic scattering cross sections. Eur. Phys. J. A 56, 1 (2020). https://doi.org/10.1140/epja/s10050-019-00020-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-019-00020-y

Navigation