Skip to main content
Log in

Determination of 1p- and 2p-stripping excitation functions for \(^{16}\)O+\(^{142}\)Ce using a recoil mass spectrometer

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We report the first direct measurement of differential transfer cross sections using a Recoil Mass Spectrometer. Absolute differential 1p- and 2p-stripping cross sections at \(\theta _\mathrm {c.m.}=180^\circ \) have been determined for the system \(^{16}\)O+\(^{142}\)Ce by detecting the heavier target-like ions at the focal plane of the Heavy Ion Reaction Analyzer. Focal plane spectra have been compared with the results of a semi-microscopic Monte-Carlo simulation to unambiguously identify the transfer channels. The methodology adopted in this work can be applied to measure multi-nucleon transfer cross sections using other similar recoil separators. The experimental excitation functions for the reactions \(^{142}\mathrm {Ce(}^{16}\textrm{O,}^{15}\mathrm {N)}^{143}\textrm{Pr}\) and \(^{142}\mathrm {Ce(}^{16}\textrm{O,}^{14}\mathrm {C)}^{144}\textrm{Nd}\) have been compared with coupled reaction channels calculations. Shell model calculations have been performed to extract spectroscopic information for the target-like nuclei. An excellent matching between measurement and theory has been obtained for 1p-stripping. For 2p-stripping, cluster transfer of two protons has been found to have dominant contribution. Measured transfer probabilities for 1p- and 2p-stripping channels have been compared with Time-Dependent Hartree–Fock calculations. Proton stripping channels are found to be more favourable compared to neutron pick-up channels. However, the theory overpredicts the measurement hinting at the need for extended approaches with explicit treatment of pairing correlations in the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has data included as electronic supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

References

  1. R. Kaufmann, R. Wolfgang, Nucleon transfer reactions in grazing collisions of heavy ions. Phys. Rev. 121, 192 (1961)

    ADS  Google Scholar 

  2. V.V. Volkov, Deep inelastic transfer reactions—the new type of reactions between complex nuclei. Phys. Rep. 44, 93 (1978)

    ADS  Google Scholar 

  3. G.G. Adamian, N.V. Antonenko, A. Diaz-Torres, S. Heinz, How to extend the chart of nuclides? Eur. Phys. J. A 56, 47 (2020)

    ADS  Google Scholar 

  4. V. Zagrebaev, W. Greiner, Production of new heavy isotopes in low-energy multinucleon transfer reactions. Phys. Rev. Lett. 101, 122701 (2008)

    ADS  Google Scholar 

  5. G.G. Adamian, N.V. Antonenko, V.V. Sargsyan, W. Scheid, Predicted yields of new neutron rich isotopes of nuclei with \(Z = 64\)–80 in the multinucleon transfer reaction \(^{48}\)Ca+\(^{238}\)U. Phys. Rev. C 81, 057602 (2010)

    ADS  Google Scholar 

  6. C.R. Morton, M. Dasgupta, D.J. Hinde, J.R. Leigh, R.C. Lemmon, J.P. Lestone, J.C. Mein, J.O. Newton, H. Timmers, N. Rowley, A.T. Kruppa, Clear signatures of specific inelastic and transfer channels in the distribution of fusion barriers. Phys. Rev. Lett. 72, 4074 (1994)

    ADS  Google Scholar 

  7. G. Pollarolo, Quasielastic barrier distributions: role of particle transfer channels. Phys. Rev. Lett. 100, 252701 (2008)

    ADS  Google Scholar 

  8. K.E. Rehm, Quasi-elastic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 41, 429 (1991)

    ADS  Google Scholar 

  9. H.A. Enge, Magnetic spectrographs for nuclear reaction studies. Nucl. Instrum. Methods 162, 161 (1979)

    ADS  Google Scholar 

  10. F. Cappuzzello, C. Agodi, D. Carbone, M. Cavallaroi, The MAGNEX spectrometer: results and perspectives. Eur. Phys. J. A 52, 167 (2016)

    ADS  Google Scholar 

  11. M. Rejmund, B. Lecornu, A. Navin, C. Schmitt, S. Damoy, O. Delaune, J. M. Enguerrand, G. Fremont, P. Gangnant, L. Gaudefroy, B. Jacquot, J. Pancin, S. Pullanhiotan, C. Spitaels, Performance of the improved larger acceptance spectrometer: VAMOS++. Nucl. Instrum. Methods Phys. Res. Sect. A 646, 184 (2011)

  12. ...A. Latina, A.M. Stefanini, S. Beghini, B.R. Behera, L. Corradi, G. De Angelis, A. De Rosa, E. Fioretto, A. Gadea, M. Gulmini, G. Inglima, M. LaCommara, G. Maron, R. Menegazzo, N. Marginean, G. Montagnoli, D.R. Napoli, D. Pierroutsakou, G. Pollarolo, M. Romoli, M. Sandoli, F. Scarlassara, S. Szilner, N. Toniolo, M. Trotta, Y.W. Wu, PRISMA—a magnetic spectrometer for heavy ions at LNL. Nucl. Phys. A 734, E1 (2004)

    Google Scholar 

  13. J.L. Ferreira, D. Carbone, M. Cavallaro, N.N. Deshmukh, C. Agodi, G.A. Brischetto, S. Calabrese, F. Cappuzzello, E.N. Cardozo, I. Ciraldo, M. Cutuli, M. Fisichella, A. Foti, L. La Fauci, O. Sgouros, V. Soukeras, A. Spatafora, D. Torresi, J. Lubian, Analysis of two-proton transfer in the \(^{40}{\rm Ca}(^{18}{\rm O}, ^{20}{\rm Ne})^{38}{\rm Ar}\) reaction at 270 MeV incident energy. Phys. Rev. C 103, 054604 (2021)

    ADS  Google Scholar 

  14. Y.X. Watanabe, Y.H. Kim, S.C. Jeong, Y. Hirayama, N. Imai, H. Ishiyama, H.S. Jung, H. Miyatake, S. Choi, J.S. Song, E. Clement, G. de France, A. Navin, M. Rejmund, C. Schmitt, G. Pollarolo, L. Corradi, E. Fioretto, D. Montanari, M. Niikura, D. Suzuki, H. Nishibata, J. Takatsu, Pathway for the production of neutron-rich isotopes around the N = 126 shell closure. Phys. Rev. Lett. 115, 172503 (2015)

    ADS  Google Scholar 

  15. F. Galtarossa, L. Corradi, S. Szilner, E. Fioretto, G. Pollarolo, T. Mijatović, D. Montanari, D. Ackermann, D. Bourgin, S. Courtin, G. Fruet, A. Goasduff, J. Grebosz, F. Haas, D. Jelavić Malenica, S.C. Jeong, H.M. Jia, P.R. John, D. Mengoni, M. Milin, G. Montagnoli, F. Scarlassara, N. Skukan, N. Soić, A.M. Stefanini, E. Strano, V. Tokić, C.A. Ur, J.J. Valiente-Dobón, Y.X. Watanabe, Mass correlation between light and heavy reaction products in multinucleon transfer \(^{197}{\rm Au}\)+\(^{130}{\rm Te}\) collisions. Phys. Rev. C 97, 054606 (2018)

  16. I. Stefan, B. Fornal, S. Leoni, F. Azaiez, C. Portail, J.C. Thomas, A.V. Karpov, D. Ackermann, P. Bednarczyk, Y. Blumenfeld, S. Calinescu, A. Chbihi, M. Ciemala, N. Cieplicka-Oryńczak, F.C.L. Crespi, S. Franchoo, F. Hammache, Ł.W. Iskra, B. Jacquot, R.V.F. Janssens, O. Kamalou, T. Lauritsen, M. Lewitowicz, L. Olivier, S.M. Lukyanov, M. Maccormick, A. Maj, P. Marini, I. Matea, M.A. Naumenko, F. de Oliveira Santos, C. Petrone, Yu.E. Penionzhkevich, F. Rotaru, H. Savajols, O. Sorlin, M. Stanoiu, B. Szpak, O.B. Tarasov, D. Verney, Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of \(^{18}\)O on a \(^{238}\)U target. Phys. Lett. B 779, 456 (2018)

  17. A. Di Nitto, J. Khuyagbaatar, D. Ackermann, L.-L. Andersson, E. Badura, M. Block, H. Brand, I. Conrad, D.M. Cox, C.E. Düllmann, J. Dvorak, K. Eberhardt, P.A. Ellison, N.E. Esker, J. Even, C. Fahlander, U. Forsberg, J.M. Gates, P. Golubev, O. Gothe, K.E. Gregorich, W. Hartmann, R.D. Herzberg, F.P. Heßberger, J. Hoffmann, R. Hollinger, A. Hübner, E. Jäger, B. Kindler, S. Klein, I. Kojouharov, J.V. Kratz, J. Krier, N. Kurz, S. Lahiri, B. Lommel, M. Maiti, R. Mändl, E. Merchán, S. Minami, A.K. Mistry, C. Mokry, H. Nitsche, J.P. Omtvedt, G.K. Pang, D. Renisch, D. Rudolph, J. Runke, L.G. Sarmiento, M. Schädel, H. Schaffner, B. Schausten, A. Semchenkov, J. Steiner, P. Thörle-Pospiech, N. Trautmann, A. Türler, J. Uusitalo, D. Ward, M. Wegrzecki, P. Wieczorek, N. Wiehl, A. Yakushev, V. Yakusheva, Study of non-fusion products in the \(^{50}\)Ti+\(^{249}\)Cf reaction. Phys. Lett. B 784, 199 (2018)

    ADS  Google Scholar 

  18. H.M. Devaraja, S. Heinz, D. Ackermann, T. Göbel, F.P. Heßberger, S. Hofmann, J. Maurer, G. Münzenberg, A.G. Popeko, A.V. Yeremin, New studies and a short review of heavy neutron-rich transfer products. Eur. Phys. J. A 56, 224 (2020)

    ADS  Google Scholar 

  19. A.K. Azhibekov, V.A. Zernyshkin, V.A. Maslov, Y.E. Penionzhkevich, K. Mendibayev, T. Issatayev, M.A. Naumenko, N.K. Skobelev, S.S. Stukalov, D. Aznabaev, Differential production cross sections for isotopes of light nuclei in the \(^{18}{\rm O}{+^{181}{\rm Ta}}\) reaction. Phys. Atom. Nucl. 83, 93 (2020)

    ADS  Google Scholar 

  20. L. Corradi, G. Pollarolo, S. Szilner, Multinucleon transfer processes in heavy-ion reactions. J. Phys. G Nucl. Part. Phys. 36, 113101 (2009)

    ADS  Google Scholar 

  21. R.R. Betts, P.M. Evans, C.N. Pass, N. Poffé, A.E. Smith, L. Stuttgé, J.S. Lilley, D.W. Banes, K.A. Connell, J. Simpson, J.R.H. Smith, A.N. James, B.R. Fulton, Measurement of sub-barrier transfer reactions for \(^{58}\)Ni+Sn using a recoil mass separator. Phys. Rev. Lett. 59, 978 (1987)

    ADS  Google Scholar 

  22. C.N. Pass, P.M. Evans, A.E. Smith, L. Stuttgé, R.R. Betts, J.S. Lilley, D.W. Banes, K.A. Connell, J. Simpson, J.R. Smith, A.N. James, B.R. Fulton, Study of neutron transfer reactions at sub-Coulomb energies using a recoil separator. Nucl. Phys. A 499, 173 (1989)

    ADS  Google Scholar 

  23. A.N. James, T.P. Morrison, K.L. Ying, K.A. Connell, H.G. Price, J. Simpson, Microsecond mass separation of heavy compound nucleus residues using the Daresbury recoil separator. Nucl. Instrum. Methods Phys. Res. Sect. A 267, 144 (1988)

  24. M.G. Herman, L.L. Lee Jr., R.J. Vojtech, S.B. Gazes, M. Satteson, J. Boyle, Measurements of \(180^\circ \) sub-barrier transfer reaction cross sections in S+Mo,Nb systems, pp. 137–142, Proc. Symp. Heavy Ion Interactions around the Coulomb Barrier, Legnaro, Italy, ed. by C. Signorini et al., Lecture Notes in Physics, Vol. 317 (Springer, Berlin, 1988)

  25. R.B. Roberts, S.B. Gazes, J.E. Mason, M. Satteson, S.G. Teichmann, L.L. Lee Jr., J.F. Liang, J.C. Mahon, R.J. Vojtech, Sub-barrier one- and two-neutron pickup measurements in \(^{32}\)S+\(^{93}\)Nb,\(^{98,100}\)Mo reactions at 180\(^\circ \). Phys. Rev. C 47, R1831 (1993)

    ADS  Google Scholar 

  26. D.R. Napoli, A.M. Stefanini, H. Moreno Gonzalez, B. Million, G. Prete, P. Spolaore, M. Narayanasamy, Z.C. Li, S. Beghini, G. Montagnoli, F. Scarlassara, G.F. Segato, C. Signorini, F. Soramel, G. Pollarolo, A. Rapisarda, Sub-barrier transfer reactions of \(^{32}\)S+\(^{64}\)Ni. Nucl. Phys. A 559, 443 (1993)

  27. A.K. Sinha, N. Madhavan, J.J. Das, P. Sugathan, D.O. Kataria, A.P. Patro, G.K. Mehta, Heavy ion reaction analyzer (HIRA): a recoil mass separator facility at NSC. Nucl. Instrum. Methods Phys. Res. Sect. A 339, 543 (1994)

  28. D.O. Kataria, A.K. Sinha, J.J. Das, N. Madhavan, P. Sugathan, L.T. Baby, I. Mazumdar, R. Singh, C.V.K. Baba, Y.K. Agarwal, A.M. Vinodkumar, K.M. Varier, One- and two-nucleon transfer in the \(^{28}\)Si+\(^{68}\)Zn system at energies below the Coulomb barrier. Phys. Rev. C 56, 1902 (1997)

  29. V. Tripathi, L.T. Baby, P.V. Madhusudhana Rao, S.K. Hui, R. Singh, J.J. Das, P. Sugathan, N. Madhavan, A.K. Sinha, Measurement of the ground state 2n pickup probability for \(^{28}\)Si+\(^{68}\)Zn and its role in sub-barrier fusion enhancement. Pramana J. Phys. 53, 535 (1999)

  30. L.T. Baby, V. Tripathi, D.O. Kataria, J.J. Das, P. Sugathan, N. Madhavan, A.K. Sinha, M.C. Radhakrishna, N.M. Badiger, N.G. Puttaswamy, A.M. Vinodkumar, N.V.S.V. Prasad, Transfer and higher-order phonon coupling effects in the sub-barrier fusion of \(^{28}\)Si and \(^{93}\)Nb. Phys. Rev. C 56, 1936 (1997)

  31. A.K. Sinha et al. in collaboration with L.T. Baby, N. Badiger, J.J. Das, S.K. Hui, D.O. Kataria, R.G. Kulkarni, N. Madhavan, P.V. Madhusudhana Rao, I. Majumdar, M.C. Radhakrishna, N.V.S.V. Prasad, N.G. Puttaswamy, P. Shakeeb, R. Singh, D.L. Shastry, P. Sugathan, V. Tripathi, K.M. Varier, A.M. Vinodkumar, Sub-barrier few-nucleon transfer reaction and channel coupling effects in heavy ion fusion. J. Phys. G Nucl. Part. Phys. 23, 1331 (1997)

  32. K.M. Varier, A.M. Vinodkumar, N.V.S.V. Prasad, P.V. Madhusudhana Rao, D.L. Sastry, L.T. Baby, M.C. Radhakrishna, N.G. Puttaswamy, J.J. Das, P. Sugathan, N. Madhavan, A.K. Sinha, D.O. Kataria, Transfer measurements for the Ti + Ni systems at near barrier energies. Pramana J. Phys. 53, 529 (1999)

  33. S. Kalkal, S. Mandal, N. Madhavan, A. Jhingan, E. Prasad, R. Sandal, S. Nath, J. Gehlot, R. Garg, G. Mohanto, M. Saxena, S. Goyal, S. Verma, B.R. Behera, S. Kumar, U.D. Pramanik, A.K. Sinha, R. Singh, Multinucleon transfer reactions for the \(^{28}\)Si+\(^{90,94}\)Zr systems in the region below and near the Coulomb barrier. Phys. Rev. C 83, 054607 (2011)

  34. S. Nath, A Monte Carlo code to calculate transmission efficiency of HIRA. Nucl. Instrum. Methods Phys. Res. Sect. A 576, 403 (2007)

  35. R. Biswas, S. Nath, Simulation of a recoil mass spectrometer for measurement of differential quasi-elastic scattering cross sections. Eur. Phys. J. A 56, 1 (2020)

  36. R. Biswas, S. Kalkal, S. Nath, Studying multi-nucleon transfer reaction in a recoil mass spectrometer. Eur. Phys. J A 57, 9 (2021)

  37. R. Biswas, S.R. Abhilash, H. Gupta, G.R. Umapathy, A. Dawar, S. Nath, Fabrication of thin \(^{140,142}\)Ce target foils for study of nuclear reaction dynamics. Vacuum 188, 110159 (2021)

  38. http://www.fresco.org.uk/

  39. I.J. Thompson, Coupled reaction channels calculations in nuclear physics. Comput. Phys. Rep. 7, 167 (1988)

    ADS  Google Scholar 

  40. W.D.M. Rae, NuShellX. http://www.garsington.eclipse.co.uk/

  41. B.A. Brown, W.D.M. Rae, The shell-model code NuShellX@MSU. Nucl. Data Sheets 120, 115 (2014)

    ADS  Google Scholar 

  42. J. Hakala, J. Dobaczewski, D. Gorelov, T. Eronen, A. Jokinen, A. Kankainen, V.S. Kolhinen, M. Kortelainen, I.D. Moore, H. Penttilä, S. Rinta-Antila, J. Rissanen, A. Saastamoinen, V. Sonnenschein, J. Äystö, Precision mass measurements beyond \(^{132}\)Sn: anomalous behavior of odd-even staggering of binding energies. Phys. Rev. Lett. 109, 032501 (2012)

    ADS  Google Scholar 

  43. K.L. Jones, A.S. Adekola, D.W. Bardayan, J.C. Blackmon, K.Y. Chae, K.A. Chipps, J.A. Cizewski, L. Erikson, C. Harlin, R. Hatarik, R. Kapler, R.L. Kozub, J.F. Liang, R. Livesay, Z. Ma, B.H. Moazen, C.D. Nesaraja, F.M. Nunes, S.D. Pain, N.P. Patterson, D. Shapira, J.F. Shriner Jr., M.S. Smith, T.P. Swan, J.S. Thomas, The magic nature of \(^{132}\)Sn explored through the single-particle states of \(^{133}\)Sn. Nature 465, 454 (2010)

    ADS  Google Scholar 

  44. Ö. Akyüz, A. Winther, Proceedings of the International School of Physics “Enrico Fermi”, Course LXXVII edited by R.A. Broglia, C.H. Dasso, R. Ricci (North-Holland, Amsterdam, 1981)

  45. B. Paes, G. Santagati, R. Magana Vsevolodovna, F. Cappuzzello, D. Carbone, E.N. Cardozo, M. Cavallaro, H. García-Tecocoatzi, A. Gargano, J.L. Ferreira, S.M. Lenzi, R. Linares, E. Santopinto, A. Vitturi, J. Lubian, Long-range versus short-range correlations in the two-neutron transfer reaction \(^{64}\)Ni(\( ^{18} \)O,\( ^{16} \)O)\( ^{66} \)Ni. Phys. Rev. C 96, 044612 (2017)

  46. M. Leuschner, J.R. Calarco, F.W. Hersman, E. Jans, G.J. Kramer, L. Lapikás, G. van der Steenhoven, P.K.A. de Witt Huberts, H.P. Blok, N. Kalantar-Nayestanaki, J. Friedrich, Quasielastic proton knockout from \(^{16}\)O. Phys. Rev. C. 49, 955 (1994)

  47. P.P. Tung, K.A. Erb, M.W. Sachs, G.B. Sherwood, R.J. Ascujtto, D.A. Bromley, Sequential amplitudes in heavy-ion induced two-proton transfer reactions. Phys. Rev. C 18, 1663 (1978)

    ADS  Google Scholar 

  48. G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, Oxford, 1983)

    Google Scholar 

  49. M. Moshinsky, Transformation brackets for harmonic oscillator functions. Nucl. Phys. 13, 104 (1959)

    MathSciNet  MATH  Google Scholar 

  50. D. Carbone, J.L. Ferreira, F. Cappuzzello, J. Lubian, C. Agodi, M. Cavallaro, A. Foti, A. Gargano, S.M. Lenzi, R. Linares, G. Santagati, Microscopic cluster model for the description of new experimental results on the \(^{13} \)C( \( ^{18} \)O, \( ^{16} \)O)\( ^{15} \)C two-neutron transfer at 84 MeV incident energy. Phys. Rev. C. 95, 034603 (2017)

    ADS  Google Scholar 

  51. V. Jha, B.J. Roy, A. Chatterjee, H.S. Patel, B. Srinivasan, M.G. Betigeri, H. Machner, \(^{16}\)O-induced transfer reactions on \(^{90}\)Zr. Eur. Phys. J. A 15, 389 (2002)

    ADS  Google Scholar 

  52. L. Corradi, S. Szilner, G. Pollarolo, T. Mijatović, D. Montanari, E. Fioretto, A. Goasduff, D. Jelavić Malenica, G. Montagnoli, A.M. Stefanini, Evidence of proton-proton correlations in the \(^{116}\)Sn+\(^{60}\)Ni transfer reactions. Phys. Lett. B 834, 137477 (2022)

  53. K. Sekizawa, Time-dependent Hartree–Fock theory and its extensions for the multinucleon transfer reactions: a mini review. Front. Phys. 7, 20 (2019)

    Google Scholar 

  54. E. Williams, K. Sekizawa, D.J. Hinde, C. Simenel, M. Dasgupta, I.P. Carter, K.J. Cook, D.Y. Jeung, S.D. McNeil, C.S. Palshetkar, D.C. Rafferty, K. Ramachandran, A. Wakhle, Exploring zeptosecond quantum equilibration dynamics: From deep-inelastic to fusion-fission outcomes in \(^{58}\)Ni+\(^{60}\)Ni reactions. Phys. Rev. Lett. 120, 022501 (2018)

    ADS  Google Scholar 

  55. K. Sekizawa, K. Hagino, Time-dependent Hartree–Fock plus Langevin approach for hot fusion reactions to synthesize the \(Z=120\) superheavy element. Phys. Rev. C 99, 051602(R) (2019)

    ADS  Google Scholar 

  56. K. Sekizawa, S. Ayik, Quantal diffusion approach for multinucleon transfer processes in the \(^{58,64}\)Ni+\(^{208}\)Pb reactions: toward the production of unknown neutron-rich nuclei. Phys. Rev. C 102, 014620 (2020)

    ADS  Google Scholar 

  57. S. Ayik, K. Sekizawa, Kinetic energy dissipation and fluctuations in strongly-damped heavy-ion collisions within the stochastic mean-field approach. Phys. Rev. C 102, 064619 (2020)

    ADS  Google Scholar 

  58. C. Simenel, A.S. Umar, Heavy-ion collisions and fission dynamics with the time-dependent Hartree–Fock theory and its extensions. Prog. Part. Nucl. Phys. 103, 19 (2018)

    ADS  Google Scholar 

  59. P.D. Stevenson, M.C. Barton, Low-energy heavy-ion reactions and the Skyrme effective interaction. Prog. Part. Nucl. Phys. 104, 142 (2019)

    ADS  Google Scholar 

  60. K.-H. Kim, T. Otsuka, P. Bonche, Three-dimensional TDHF calculations for reactions of unstable nuclei. J. Phys. G Nucl. Part. Phys. 23, 1267 (1997)

    ADS  Google Scholar 

  61. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, New Skyrme effective forces for supernovae and neutron rich nuclei. Phys. Scr. T56, 231 (1995)

    ADS  Google Scholar 

  62. C. Simenel, Particle transfer reactions with the time-dependent Hartree–Fock theory using a particle number projection technique. Phys. Rev. Lett. 105, 192701 (2010)

    ADS  Google Scholar 

  63. S. Ebata, T. Nakatsukasa, T. Inakura, K. Yoshida, Y. Hashimoto, K. Yabana, Canonical-basis time-dependent Hartree–Fock–Bogoliubov theory and linear-response calculations. Phys. Rev. C 82, 034306 (2010)

    ADS  Google Scholar 

  64. G. Scamps, D. Lacroix, Effect of pairing on one- and two-nucleon transfer below the Coulomb barrier: a time-dependent microscopic description. Phys. Rev. C 87, 014605 (2013)

    ADS  Google Scholar 

  65. P. Magierski, K. Sekizawa, G. Wlazłowski, Novel role of superfluidity in low-energy nuclear reactions. Phys. Rev. Lett. 119, 042501 (2017)

    ADS  Google Scholar 

  66. Y. Hashimoto, G. Scamps, Gauge angle dependence in time-dependent Hartree–Fock–Bogoliubov calculations of \(^{20}\)O+\(^{20}\)O head-on collisions with the Gogny interaction. Phys. Rev. C 94, 014610 (2016)

    ADS  Google Scholar 

  67. G. Scamps, Y. Hashimoto, Transfer probabilities for the reactions \(^{14,20}\)O+\(^{20}\)O in terms of multiple time-dependent Hartree–Fock–Bogoliubov trajectories. Phys. Rev. C 96, 031602(R) (2017)

    ADS  Google Scholar 

  68. D. Regnier, D. Lacroix, G. Scamps, Y. Hashimoto, Microscopic description of pair transfer between two superfluid Fermi systems: combining phase-space averaging and combinatorial techniques. Phys. Rev. C 97, 034627 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

R.B. acknowledges Council of Scientific and Industrial Research (CSIR), New Delhi for financial support via grant no. CSIR/09/760(0030)/2017-EMR-I. K.S. used computational resources of the HPCI system (Oakforest-PACS) provided by Joint Center for Advanced High Performance Computing (JCAHPC) through the HPCI System Project (Project ID: hp210023) and computational resources (in art) of the Yukawa-21 System at Yukawa Institute for Theoretical Physics (YITP), Kyoto University. K.S. was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI, Grant-in-Aid for Early-Career Scientists via grant no. 19K14704. The authors are grateful to the Pelletron staff of IUAC for excellent operation of the accelerator during the experiment and the Target Laboratory personnel of IUAC for fabrication of targets. Discussions with Dr. Md. Moin Shaikh and Dr. Abhijit Bisoi are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nath.

Additional information

Communicated by Takashi Nakamura.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 172 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Nath, S., Gehlot, J. et al. Determination of 1p- and 2p-stripping excitation functions for \(^{16}\)O+\(^{142}\)Ce using a recoil mass spectrometer. Eur. Phys. J. A 59, 60 (2023). https://doi.org/10.1140/epja/s10050-023-00975-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00975-z

Navigation