Skip to main content
Log in

Analysis of the mass and width of the X*(3860) with QCD sum rules

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this article, we tentatively assign the \(X^{\ast}(3860)\) to be the \(C\gamma_{5}\otimes \gamma_{5}C\)-type scalar tetraquark state and study its mass and width with the QCD sum rules; special attention is paid to calculating the hadronic coupling constants \(G_{X\eta_{c}\pi}\) and \(G_{XDD}\) concerning the tetraquark state. We obtain the values \(M_{X}=3.86 \pm 0.09\) GeV and \( \Gamma_{X}= 202\pm 146\) MeV, which are consistent with the experimental data. The numerical result supports assigning the \(X^{\ast}(3860)\) to be the \( C\gamma_{5}\otimes \gamma_{5}C\)-type scalar tetraquark state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Chilikin et al., Phys. Rev. D 95, 112003 (2017)

    Article  ADS  Google Scholar 

  2. T. Barnes, S. Godfrey, E.S. Swanson, Phys. Rev. D 72, 054026 (2005)

    Article  ADS  Google Scholar 

  3. B.Q. Li, K.T. Chao, Phys. Rev. D 79, 094004 (2009)

    Article  ADS  Google Scholar 

  4. S.K. Choi et al., Phys. Rev. Lett. 94, 182002 (2005)

    Article  ADS  Google Scholar 

  5. B. Aubert et al., Phys. Rev. Lett. 101, 082001 (2008)

    Article  ADS  Google Scholar 

  6. S. Uehara et al., Phys. Rev. Lett. 104, 092001 (2010)

    Article  ADS  Google Scholar 

  7. R.F. Lebed, A.D. Polosa, Phys. Rev. D 93, 094024 (2016)

    Article  ADS  Google Scholar 

  8. Z.G. Wang, Eur. Phys. J. C 77, 78 (2017)

    Article  ADS  Google Scholar 

  9. Z.G. Wang, Eur. Phys. J. A 53, 19 (2017)

    Article  ADS  Google Scholar 

  10. Z.G. Wang, Phys. Rev. D 79, 094027 (2009)

    Article  ADS  Google Scholar 

  11. Z.G. Wang, Eur. Phys. J. C 67, 411 (2010)

    Article  ADS  Google Scholar 

  12. Z.G. Wang, Eur. Phys. J. C 70, 139 (2010)

    Article  ADS  Google Scholar 

  13. Z.G. Wang, Eur. Phys. J. C 74, 2874 (2014)

    Article  ADS  Google Scholar 

  14. Z.G. Wang, Mod. Phys. Lett. A 29, 1450207 (2014)

    Article  ADS  Google Scholar 

  15. Z.G. Wang, Eur. Phys. J. C 76, 387 (2016)

    Article  ADS  Google Scholar 

  16. Z.G. Wang, Int. J. Mod. Phys. A 30, 1550168 (2015)

    Article  ADS  Google Scholar 

  17. W. Chen, T.G. Steele, H.X. Chen, S.L. Zhu, Eur. Phys. J. C 75, 358 (2015)

    Article  ADS  Google Scholar 

  18. Z.G. Wang, Eur. Phys. J. C 76, 279 (2016)

    Article  ADS  Google Scholar 

  19. J.M. Dias, F.S. Navarra, M. Nielsen, C.M. Zanetti, Phys. Rev. D 88, 016004 (2013)

    Article  ADS  Google Scholar 

  20. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  21. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979)

    Article  ADS  Google Scholar 

  22. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985)

    Article  ADS  Google Scholar 

  23. P. Colangelo, A. Khodjamirian, arXiv:hep-ph/0010175

  24. K.A. Olive et al., Chin. Phys. C 38, 090001 (2014)

    Article  ADS  Google Scholar 

  25. Z.G. Wang, Commun. Theor. Phys. 63, 325 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Z.G. Wang, T. Huang, Phys. Rev. D 89, 054019 (2014)

    Article  ADS  Google Scholar 

  27. Z.G. Wang, T. Huang, Nucl. Phys. A 930, 63 (2014)

    Article  ADS  Google Scholar 

  28. K. Abe et al., Phys. Rev. Lett. 98, 082001 (2007)

    Article  ADS  Google Scholar 

  29. P. Pakhlov et al., Phys. Rev. Lett. 100, 202001 (2008)

    Article  ADS  Google Scholar 

  30. K. Azizi, Y. Sarac, H. Sundu, Phys. Rev. D 90, 114011 (2014)

    Article  ADS  Google Scholar 

  31. K. Azizi, Y. Sarac, H. Sundu, Nucl. Phys. A 943, 159 (2015)

    Article  ADS  Google Scholar 

  32. K. Azizi, Y. Sarac, H. Sundu, Phys. Rev. D 92, 014022 (2015)

    Article  ADS  Google Scholar 

  33. Z.G. Wang, Phys. Rev. D 89, 034017 (2014)

    Article  ADS  Google Scholar 

  34. Z.G. Wang, Eur. Phys. J. C 74, 3123 (2014)

    Article  Google Scholar 

  35. Z.G. Wang, JHEP 10, 208 (2013)

    Article  ADS  Google Scholar 

  36. Z.G. Wang, Eur. Phys. J. C 75, 427 (2015)

    Article  ADS  Google Scholar 

  37. M.E. Bracco, M. Chiapparini, F.S. Navarra, M. Nielsen, Prog. Part. Nucl. Phys. 67, 1019 (2012)

    Article  ADS  Google Scholar 

  38. V.A. Nesterenko, A.V. Radyushkin, Phys. Lett. B 115, 410 (1982)

    Article  ADS  Google Scholar 

  39. A.V. Radyushkin, Acta Phys. Pol. B 26, 2067 (1995)

    Google Scholar 

  40. A.P. Bakulev, Nucl. Phys. Proc. Suppl. 198, 204 (2010)

    Article  ADS  Google Scholar 

  41. D. Becirevic, G. Duplancic, B. Klajn, B. Melic, F. Sanfilippo, Nucl. Phys. B 883, 306 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Wang.

Additional information

Communicated by S. Hands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZG. Analysis of the mass and width of the X*(3860) with QCD sum rules. Eur. Phys. J. A 53, 192 (2017). https://doi.org/10.1140/epja/i2017-12390-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12390-6

Navigation