Skip to main content
Log in

Reanalysis of the X(3915) , X(4500) and X(4700) with QCD sum rules

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this article, we study the \( C\gamma_5\otimes \gamma_5C\) type and \( C\otimes C\) type scalar \( cs\bar{c}\bar{s}\) tetraquark states with the QCD sum rules by calculating the contributions of the vacuum condensates up to dimension 10 in a consistent way. The ground state masses \( M_{C\gamma_5\otimes \gamma_5C}=3.89\pm 0.05\) GeV and \( M_{C\otimes C} =5.48\pm0.10\) GeV support assigning the \( X(3915)\) as the ground state \( C\gamma_5\otimes \gamma_5C\) type tetraquark state with \( J^{PC}=0^{++}\) , but do not support assigning the \( X(4700)\) as the ground state \( C\otimes C\) type \( cs\bar{c}\bar{s}\) tetraquark state with \( J^{PC}=0^{++}\) . Then we tentatively assign the \( X(3915)\) and \( X(4500)\) as the 1S and 2S \( C\gamma_5\otimes \gamma_5C\) type scalar \( cs\bar{c}\bar{s}\) tetraquark states respectively, and obtain the 1S mass \( M_{1S}= 3.85^{+0.18}_{-0.17}\) GeV and 2S mass M 2S = 4.35+0.10 -0.11 GeV from the QCD sum rules, which support assigning the X(3915) as the 1S \( C\gamma_5\otimes \gamma_5C\) type tetraquark state, but do not support assigning the X(4500) as the 2S \( C\gamma_5\otimes \gamma_5C\) type tetraquark state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Aaij et al., Phys. Rev. Lett. 118, 022003 (2017)

    Article  ADS  Google Scholar 

  2. R. Aaij et al., Phys. Rev. D 95, 012002 (2017)

    Article  ADS  Google Scholar 

  3. H.X. Chen, E.L. Cui, W. Chen, X. Liu, S.L. Zhu, arXiv:1606.03179

  4. X.H. Liu, arXiv:1607.01385

  5. L. Maiani, A.D. Polosa, V. Riquer, Phys. Rev. D 94, 054026 (2016)

    Article  ADS  Google Scholar 

  6. R. Zhu, Phys. Rev. D 94, 054009 (2016)

    Article  ADS  Google Scholar 

  7. R.F. Lebed, A.D. Polosa, Phys. Rev. D 93, 094024 (2016)

    Article  ADS  Google Scholar 

  8. Z.G. Wang, arXiv:1606.05872

  9. Z.G. Wang, Eur. Phys. J. C 76, 657 (2016)

    Article  ADS  Google Scholar 

  10. A. De Rujula, H. Georgi, S.L. Glashow, Phys. Rev. D 12, 147 (1975)

    Article  ADS  Google Scholar 

  11. T. DeGrand, R.L. Jaffe, K. Johnson, J.E. Kiskis, Phys. Rev. D 12, 2060 (1975)

    Article  ADS  Google Scholar 

  12. Z.G. Wang, Eur. Phys. J. C 71, 1524 (2011)

    ADS  Google Scholar 

  13. R.T. Kleiv, T.G. Steele, A. Zhang, Phys. Rev. D 87, 125018 (2013)

    Article  ADS  Google Scholar 

  14. Z.G. Wang, Commun. Theor. Phys. 59, 451 (2013)

    Article  ADS  Google Scholar 

  15. Z.G. Wang, Phys. Rev. D 79, 094027 (2009)

    Article  ADS  Google Scholar 

  16. Z.G. Wang, Eur. Phys. J. C 67, 411 (2010)

    Article  ADS  Google Scholar 

  17. Z.G. Wang, Eur. Phys. J. C 74, 2874 (2014)

    Article  ADS  Google Scholar 

  18. Z.G. Wang, Commun. Theor. Phys. 63, 466 (2015)

    Article  ADS  Google Scholar 

  19. Z.G. Wang, T. Huang, Nucl. Phys. A 930, 63 (2014)

    Article  ADS  Google Scholar 

  20. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  21. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979)

    Article  ADS  Google Scholar 

  22. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985)

    Article  ADS  Google Scholar 

  23. P. Pascual, R. Tarrach, QCD: Renormalization for the Practitioner (Springer, Berlin, Heidelberg, 1984)

  24. Z.G. Wang, T. Huang, Phys. Rev. D 89, 054019 (2014)

    Article  ADS  Google Scholar 

  25. Z.G. Wang, Acta Phys. Pol. B 44, 1971 (2013)

    Article  ADS  Google Scholar 

  26. Z.G. Wang, Eur. Phys. J. A 49, 131 (2013)

    Article  ADS  Google Scholar 

  27. P. Colangelo, A. Khodjamirian, hep-ph/0010175

  28. S. Narison, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 17, 1 (2002)

    Google Scholar 

  29. C. Patrignani et al., Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  30. S.J. Brodsky, D.S. Hwang, R.F. Lebed, Phys. Rev. Lett. 113, 112001 (2014)

    Article  ADS  Google Scholar 

  31. Z.G. Wang, Eur. Phys. J. C 76, 387 (2016)

    Article  ADS  Google Scholar 

  32. Z.G. Wang, Commun. Theor. Phys. 63, 325 (2015)

    Article  ADS  Google Scholar 

  33. Z.G. Wang, Int. J. Theor. Phys. 51, 507 (2012)

    Article  ADS  Google Scholar 

  34. Z.G. Wang, Int. J. Mod. Phys. A 30, 1550168 (2015)

    Article  ADS  Google Scholar 

  35. M.S. Maior de Sousa, R. Rodrigues da Silva, Braz. J. Phys. 46, 730 (2016)

    Article  ADS  Google Scholar 

  36. C.A. Dominguez, Int. J. Mod. Phys. A 29, 1430069 (2014)

    Article  ADS  Google Scholar 

  37. A. Ayala, C.A. Dominguez, M. Loewe, arXiv:1608.04284

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Wang.

Additional information

Communicated by A. Peshier

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZG. Reanalysis of the X(3915) , X(4500) and X(4700) with QCD sum rules. Eur. Phys. J. A 53, 19 (2017). https://doi.org/10.1140/epja/i2017-12208-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12208-7

Navigation