Skip to main content
Log in

Relativistic modeling of compact stars for anisotropic matter distribution

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this paper we have solved Einstein's field equations of spherically symmetric spacetime for anisotropic matter distribution by assuming physically valid expressions of the metric function \(e^{\lambda}\) and radial pressure (\(p_{r}\)). Next we have discussed the physical properties of the model in details by taking the radial pressure \(p_{r}\) equal to zero at the boundary of the star. The physical analysis of the star indicates that its model parameters such as density, redshift, radial pressure, transverse pressure and anisotropy are well behaved. Also we have obtained the mass and radius of our compact star which are \(2.29M_{\odot}\) and 11.02 km, respectively. It is observed that the model obtained here for compact stars is compatible with the mass and radius of the strange star PSR 1937 +21 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.X. Xu et al., Chin. Phys. Lett. 18, 837 (2001)

    Article  ADS  Google Scholar 

  2. M. Azam et al., Chin. Phys. Lett. 33, 070401 (2016)

    Article  Google Scholar 

  3. C. Alcock et al., Astrophys. J. 310, 261 (1986)

    Article  ADS  Google Scholar 

  4. P. Haensel et al., Astron. Astrophys. 160, 121 (1986)

    ADS  Google Scholar 

  5. M. Harrison, S.G. Peggs, T. Roser, Annu. Rev. Nucl. Part. Sci. 52, 425 (2002)

    Article  ADS  Google Scholar 

  6. V. Begun, W. Florkowski, Phys. Rev. C 91, 054909 (2015)

    Article  ADS  Google Scholar 

  7. R. Kippenhahn, A. Weigert, Steller Structure and Evolution (Springer, Berlin, 1990)

  8. A.I. Sokolov, J. Exp. Theor. Phys. 79, 1137 (1980)

    Google Scholar 

  9. R.F. Sawyer, Phys. Rev. Lett. 29, 382(E) (1972)

    Article  ADS  Google Scholar 

  10. D. Reimers et al., Astron. Astrophys. 311, 572 (1996)

    ADS  Google Scholar 

  11. A.P. Martinez, R.G. Felipe, D.M. Paret, Int. J. Mod. Phys. D 19, 1511 (2010)

    Article  ADS  Google Scholar 

  12. G.P. Horedt, Polytropes - Applications in Astrophysics and Related Fields, in Astrophysics and Space Science Library, Vol. 306 (Springer, 2004)

  13. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1971)

    Article  ADS  Google Scholar 

  14. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

  15. J. Binney, S. Tremaine, Galactic dynamics (Princeton University Press, Princeton, 1987)

  16. P. Cuddeford, Mon. Not. R. Astron. Soc. 253, 414 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  17. R.W. Michie, Mon. Not. R. Astron. Soc. 125, 127 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  18. K. Dev, M. Gleiser, Gen. Relativ. Gravit. 34, 1793 (2002)

    Article  Google Scholar 

  19. M.K. Mak, T. Harko, Proc. R. Soc. Lond. A 459, 393 (2002)

    Article  ADS  Google Scholar 

  20. W. Hillebrandt, K.O. Steinmetz, Astron. Astrophys. 53, 283 (1976)

    ADS  Google Scholar 

  21. R. Sharma et al., Gen. Relativ. Gravit. 33, 999 (2001)

    Article  ADS  Google Scholar 

  22. R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265, 533 (1993)

    Article  ADS  Google Scholar 

  23. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Esculpi et al., Gen. Relativ. Gravit. 39, 633 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.S.R. Delgaty, K. Lake, Comput. Phys. Commun. 115, 395 (1998)

    Article  ADS  Google Scholar 

  26. M.K. Mak, T. Harko, Proc. R. Soc. A 459, 393 (2003)

    Article  ADS  Google Scholar 

  27. M. Malaver, AASCIT Commun. 1, 48 (2014)

    Google Scholar 

  28. M. Malaver, Res. J. Model. Simulat. 1, 65 (2014)

    Google Scholar 

  29. F.E. Schunck, E.W. Mielke, Class. Quantum. Grav. 20, R301 (2003)

    Article  ADS  Google Scholar 

  30. A.K. Yadav, F. Rahaman, S. Ray, Int. J. Theor. Phys. 50, 871 (2011)

    Article  Google Scholar 

  31. M. Visser, D.L. Wiltshire, Class. Quantum. Grav. 21, 1135 (2004)

    Article  ADS  Google Scholar 

  32. P.H. Nguyen, J.F. Pedraza, Phys. Rev. D 88, 1135 (2013)

    Article  Google Scholar 

  33. P.H. Nguyen, M. Lingam, Mon. Not. R. Astron. Soc. 436, 2014 (2013)

    Article  ADS  Google Scholar 

  34. L. Herrera, A. Di Prisco, J. Martin et al., Phys. Rev. D 69, 084026 (2004)

    Article  ADS  Google Scholar 

  35. V. Varela et al., Phys. Rev. D 82, 044052 (2010)

    Article  ADS  Google Scholar 

  36. F. Rahaman et al., Eur. Phys. J. C 75, 564 (2015)

    Article  ADS  Google Scholar 

  37. K. Komathiraj, S.D. Maharaj, Int. J. Mod. Phys. D 16, 1803 (2011)

    Article  ADS  Google Scholar 

  38. M.H. Murad, Astrophys. Space Sci. 361, 20 (2016)

    Article  ADS  Google Scholar 

  39. M. Malaver, Front. Math. Appl. 1, 9 (2014)

    Google Scholar 

  40. M. Malaver, Int. J. Mod. Phys. Appl. 2, 1 (2015)

    Google Scholar 

  41. M. Malaver, Open Sci. J. Mod. Phys. 2, 65 (2015)

    Google Scholar 

  42. S.K. Maurya, Y.K. Gupta, Phys. Scr. 86, 025009 (2012)

    Article  ADS  Google Scholar 

  43. S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 344, 243 (2013)

    Article  ADS  Google Scholar 

  44. S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 353, 657 (2014)

    Article  ADS  Google Scholar 

  45. S.K. Maurya, Y.K. Gupta, M.K. Jasim, Rep. Math. Phys. 76, 21 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  46. S.K. Maurya, Y.K. Gupta, S. Ray, B. Dayanandan, Eur. Phys. J. C 75, 225 (2015)

    Article  ADS  Google Scholar 

  47. S.K. Maurya, Y.K. Gupta, S. Ray, arXiv:1502.01915 (2015)

  48. S.K. Maurya, Y.K. Gupta, B. Dayanandan, S. Ray, Eur. Phys. J. C 76, 266 (2016)

    Article  ADS  Google Scholar 

  49. S.K. Maurya, Y.K. Gupta, B. Dayanandan, M.K. Jasim, A. Al-Jamal, Int. J. Mod. Phys. 26, 1750002 (2017)

    Article  ADS  Google Scholar 

  50. S.K. Maurya et al., Eur. Phys. J. A 52, 191 (2016)

    Article  ADS  Google Scholar 

  51. K.N. Singh et al., Int. J. Mod. Phys. D 25, 1650099 (2016)

    Article  ADS  Google Scholar 

  52. K.N. Singh, N. Pant, Astrophys. Space Sci. 361, 177 (2016)

    Article  ADS  Google Scholar 

  53. K.N. Singh, N. Pant, arXiv:1607.05971v2 (2016)

  54. K.N. Singh et al., Can. J. Phys. 94, 1017 (2016)

    Article  ADS  Google Scholar 

  55. P. Bhar et al., Astrophys. Space Sci. 360, 32 (2015)

    Article  ADS  Google Scholar 

  56. P. Bhar et al., Astrophys. Space Sci. 359, 13 (2015)

    Article  ADS  Google Scholar 

  57. P. Bhar, S.K. Maurya, Y.K. Gupta, T. Manna, Eur. Phys. J. A 52, 312 (2016)

    Article  ADS  Google Scholar 

  58. S.K. Maurya, Y.K. Gupta, Pratibha, Int. J. Mod. Phys. D 20, 1289 (2011)

    Article  ADS  Google Scholar 

  59. S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 332, 415 (2011)

    Article  ADS  Google Scholar 

  60. S.K. Maurya, Y.K. Gupta, Int. J. Theor. Phys. 51, 943 (2012)

    Article  Google Scholar 

  61. S.K. Maurya, Y.K. Gupta, Nonlinear Anal. Real World Appl. 13, 677 (2012)

    Article  MathSciNet  Google Scholar 

  62. S.K. Maurya, Y.K. Gupta, S. Ray, S.R. Choudhary, Eur. Phys. J. C 75, 1 (2015)

    Article  ADS  Google Scholar 

  63. N. Pant, S.K. Maurya, Appl. Math. Comput. 218, 8260 (2012)

    MathSciNet  Google Scholar 

  64. B.V. Ivanov, Int. J. Theor. Phys. 49, 1236 (2010)

    Article  Google Scholar 

  65. D.D. Dionysiou, Astrophys. Space Sci. 85, 331 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  66. P. Mafa Takisa, S.D. Maharaj, Subharthi Ray, Astrophys. Space Sci. 354, 463 (2014)

    Article  ADS  Google Scholar 

  67. Ksh. Newton Singh, Neeraj Pant, M. Govender, Chin. Phys. C 41, 15103 (2017)

    Article  Google Scholar 

  68. K. Lake, Phys. Rev. D 67, 104015 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  69. C.W. Misner, D.H. Sharp, Phys. Rev. B 136, 571 (1964)

    Article  ADS  Google Scholar 

  70. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  71. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  72. L. Herrera et al., Astrophys. J. 234, 1094 (1979)

    Article  ADS  Google Scholar 

  73. L. Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  74. H. Abreu, H. Hernandez, L.A. Nunez, Class. Quantum Grav. 24, 4631 (2007)

    Article  ADS  Google Scholar 

  75. H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  76. N. Straumann, General Relativity and Relativistic Astrophysics (Springer Verlag, Berlin, 1984)

  77. C.G. Bohmer, T. Harko, Class. Quantum Grav. 23, 6479 (2006)

    Article  ADS  Google Scholar 

  78. B.V. Ivanov, Phys. Rev. D 65, 104011 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Maurya.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S.K. Relativistic modeling of compact stars for anisotropic matter distribution. Eur. Phys. J. A 53, 89 (2017). https://doi.org/10.1140/epja/i2017-12280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12280-y

Navigation