Skip to main content
Log in

A comparative analysis of the adiabatic stability of anisotropic spherically symmetric solutions in general relativity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A family of static solutions of the Einstein field equations with spherical symmetry for a locally anisotropic fluid with homogeneous energy density is obtained. These solutions depend on two adjustable parameters related to degree of anisotropy of the fluid. Some known solutions may be recovered for specific values of these parameters. As a difference to other known solutions it is possible to change the grade of anisotropy of the model, keeping the same functional dependence on the coordinates. By means of a slow adiabatic contraction, the stability of the obtained solutions is studied. Also, it is shown, how it is possible to enhance the stability of the models by adjusting the parameters, and to obtain more compact configurations than those obtained with other similar anisotropic solutions, while the dominant or strong energy condition holds within the sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lemaitre G. (1933). Ann. Soc. Sci. Bruxelles A 53: 51

    ADS  Google Scholar 

  2. Florides P.S. (1974). Proc. R. Soc. Lond. A 337: 529

    Article  ADS  MathSciNet  Google Scholar 

  3. Bowers R.L. and Liang E.P.T. (1974). Anisotropic spheres in general relativity. Astrophys. J. 188: 657–665

    Article  ADS  Google Scholar 

  4. Letelier P. (1980). Phys. Rey. D 22: 807

    Article  ADS  MathSciNet  Google Scholar 

  5. Cosenza M., Herrera L., Esculpi M. and Witten L. (1981). J. Math. Phys. 22: 118

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Bayin S. (1982). Phys. Rey. D 26: 1262

    Article  ADS  MathSciNet  Google Scholar 

  7. Krori K.D., Borgohain P., Can R. and Devi (1984). J. Phys. 62: 239

    MATH  ADS  Google Scholar 

  8. Bondi H. (1992). Mon. Not. R. Astron. Soc. 259: 365

    ADS  Google Scholar 

  9. Ponce de Leon J. (1987). J. Math. Phys. 28: 1114

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Herrera L. (1992). Phys. Lett. A 165: 206

    Article  ADS  MathSciNet  Google Scholar 

  11. Herrera L. and Santos N.O. (1997). Phys. Rep. 286: 53

    Article  ADS  MathSciNet  Google Scholar 

  12. Gokhroo M. and Mehra A. (1994). Gen. Rel. Grav. 26: 75

    Article  MathSciNet  ADS  Google Scholar 

  13. Mak M., Dobson P. and Harko T. (2002). Int. J. Mod. Phys. D 11: 207

    Article  ADS  Google Scholar 

  14. Chaisi M. and Maharaj D. (2005). Gen. Rel. Grav. 37: 1177

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Mak M. and Harko T. (2003). Proc. Roy. Soc. Lond. A 459: 393

    MATH  ADS  MathSciNet  Google Scholar 

  16. Ruderman R. (1972). Ann. ihv. Astron. Astrophys. 10: 427

    Article  ADS  Google Scholar 

  17. Sokolov, A.1.: JETP 7, 1337 (1980)

  18. Canuto V. (1974). Annu. Rev. Astron. Astrophys. 12: 167

    Article  ADS  Google Scholar 

  19. Glendenning, N.K.: Compact stars: nuclear physics, particle physics and general relativity. In: Heiselberg, H., Jensen, M.-H. (eds.) Phys. Rep. 328, 237 (2000).

  20. Heinztmann, H., Hillebrandt, W.: Astron. Astrophys. 38, 51–55

  21. Sawyer R.F. (1972). Phys. Rey. Lett. 29: 382

    Article  ADS  Google Scholar 

  22. Cattoen C., Faber T. and Visser M. (2005). Class. Quantum Grav. 22: 4189

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Mazur, P.O., Mottola, E.: Gravitational condensate stars: an altemative to black roles [arXiv:gr-qc/0109035]

  24. Bondi H. (1999). Mon. Not. R. Astron. Soc. 302: 337

    Article  ADS  Google Scholar 

  25. Ivanov B.V. (2002). Phys. Rev. D 65: 104011

    Article  ADS  Google Scholar 

  26. Barraco D., Hamity V. and Gleiser R. (2003). Phys. Rev. D 67: 064003

    Article  ADS  MathSciNet  Google Scholar 

  27. Dev K. Gleiser M. (2002). Gen. Rel. Grav. 34: 1793

    Article  MATH  MathSciNet  Google Scholar 

  28. Herrera L., Ruggeri G. and Witten L. (1979). Astrophys. J. 234: 1094

    Article  ADS  Google Scholar 

  29. Bondi H. (1964). Proc. R. Soc. A 281: 39

    MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Aloma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esculpi, M., Malaver, M. & Aloma, E. A comparative analysis of the adiabatic stability of anisotropic spherically symmetric solutions in general relativity. Gen Relativ Gravit 39, 633–652 (2007). https://doi.org/10.1007/s10714-007-0409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0409-3

Keywords

Navigation