Skip to main content
Log in

The self-consistent multiparticle-multihole configuration mixing

Motivations, state of the art and perspectives

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ∼ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Brueckner, Phys. Rev. 97, 1953 (1955)

    ADS  Google Scholar 

  2. D. Day, Rev. Mod. Phys. 39, 719 (1967)

    Article  ADS  Google Scholar 

  3. K. Tsukiyama, S.K. Bogner, A. Schwenk, Phys. Rev. Lett. 106, 222502 (2011)

    Article  ADS  Google Scholar 

  4. H. Hergert, S.K. Bogner, S. Binder, A. Calci, J. Langhammer, R. Roth, A. Schwenk, Phys. Rev. C 87, 034307 (2013)

    Article  ADS  Google Scholar 

  5. H. Hergert, S.K. Bogner, T.D. Morris, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. C 90, 041302(R) (2014)

    Article  ADS  Google Scholar 

  6. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New-York, 1980)

  7. M. Baranger, Nucl. Phys. A 149, 225 (1970)

    Article  ADS  Google Scholar 

  8. N. Pillet, J.-F. Berger, E. Caurier, Phys. Rev. C 78, 024305 (2008)

    Article  ADS  Google Scholar 

  9. N. Pillet, V.G. Zelevinsky, M. Dupuis, J.-F. Berger, J.-M. Daugas, Phys. Rev. C 85, 044315 (2012)

    Article  ADS  Google Scholar 

  10. J. Le Bloas, N. Pillet, M. Dupuis, J.-M. Daugas, L.M. Robledo, C. Robin, V.G. Zelevinsky, Phys. Rev. C 89, 024305(R) (2014)

    Article  Google Scholar 

  11. C. Robin, N. Pillet, D. Peña Arteaga, J.-F. Berger, Phys. Rev. C 93, 024302 (2016)

    Article  ADS  Google Scholar 

  12. C. Robin, N. Pillet, M. Dupuis, J. Le Bloas, J.-F. Berger, submitted to Phys. Rev. C, arXiv:1611.03445

  13. D. Gogny, in Proceedings of the International Conference on Nuclear Physics, Munich, August 27 - September 1, 1973, edited by J. de Boer, H.J. Mang (North-Holland, Amsterdam, 1974) p. 48

  14. D. Gogny, in Nuclear Self-Consistent Fields, Trieste, edited by G. Ripka, M. Porneuf (North-Holland, Amsterdam, 1975) p. 333

  15. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)

    Article  ADS  Google Scholar 

  16. J.-F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 502, 85c (1989)

    Article  ADS  Google Scholar 

  17. J.-F. Berger, M. Girod, D. Gogny, Comput. Phys. Commun. 63, 365 (1991)

    Article  ADS  Google Scholar 

  18. C. Froese-Fischer, Comput. Phys. Commun. 1, 151 (1969)

    Article  ADS  Google Scholar 

  19. J.C. Morrison, C. Froese-Fischer, Phys. Rev. A 35, 2429 (1987)

    Article  ADS  Google Scholar 

  20. D.L. Yeager, P. Jørgensen, J. Chem. Phys. 71, 2 (1979)

    Article  Google Scholar 

  21. H.J. Werner, W. Meyer, J. Chem. Phys. 74, 1 (1981)

    Article  Google Scholar 

  22. A. Faessler, A. Plastino, Z. Phys. 220, 88 (1969)

    Article  ADS  Google Scholar 

  23. S.M. Abecasis, A. Faessler, A. Plastino, Z. Phys. 218, 394 (1969)

    Article  ADS  Google Scholar 

  24. L. Satpathy, Q. Ho-Kim, Phys. Rev. Lett. 25, 123 (1970)

    Article  ADS  Google Scholar 

  25. A. Faessler, A. Plastino, K.W. Schmid, Phys. Lett. B 34, 31 (1971)

    Article  ADS  Google Scholar 

  26. Q. Ho-Kim, Phys. Rev. C 4, 1077 (1971)

    Article  ADS  Google Scholar 

  27. K.W. Schmid, L. Satpathy, A. Faessler, Z. Phys. 267, 345 (1974)

    Article  ADS  Google Scholar 

  28. K.W. Schmid, L. Satpathy, A. Faessler, Z. Phys. 267, 337 (1974)

    Article  ADS  Google Scholar 

  29. S. Krewald, K.W. Schmid, A. Faessler, Z. Phys. 269, 125 (1974)

    Article  ADS  Google Scholar 

  30. T. Duguet, G. Hagen, Phys. Rev. C 85, 034330 (2012)

    Article  ADS  Google Scholar 

  31. P.C. Martin, J. Schwinger, Phys. Rev. 115, 1342 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  32. L. Brillouin, Actual. Sci. Ind. 71, 159 (1933)

    Google Scholar 

  33. B. Levy, G. Berthier, Int. J. Quantum Chem. 2, 307 (1968)

    Article  ADS  Google Scholar 

  34. R. McWeeny, Methods of Molecular Quantum Mechanics, second edition (Academic Press, 1992)

  35. T.L. Gilbert, J. Chem. Phys. 60, 3835 (1974)

    Article  ADS  Google Scholar 

  36. J. Hinze, J. Chem. Phys. 59, 6424 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  37. J. Dukelsky, P. Schuck, Nucl. Phys. A 512, 466 (1990)

    Article  ADS  Google Scholar 

  38. J. Linderberg, Y. Öhrn, Int. J. Quantum Chem. 12, 161 (1977)

    Article  Google Scholar 

  39. D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968)

    Article  ADS  Google Scholar 

  40. Jean-Paul Blaizot, Georges Ripka, Quantum Theory of Finite Systems (The MIT Press, 1986)

  41. G. Ripka, J.-P. Blaizot, Cours de Physique Nucléaire Théorique (CEA, Saclay, 1978)

  42. R. Padgen, G. Ripka, Nucl. Phys. A 149, 273 (1970)

    Article  ADS  Google Scholar 

  43. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 77, 427 (2005)

    Article  ADS  Google Scholar 

  44. T. de Forest, J.D. Walecka, Adv. Phys. 15, 1 (1980)

    Article  ADS  Google Scholar 

  45. J. Heisenberg et al., Phys. Rev. C 25, 2292 (1982)

    Article  ADS  Google Scholar 

  46. B. Dreher et al., Nucl. Phys. A 235, 219 (1974)

    Article  ADS  Google Scholar 

  47. M. Dupuis, S. Karataglidis, E. Bauge, J.-P. Delaroche, D. Gogny, Phys. Lett. B 665, 152 (2008)

    Article  ADS  Google Scholar 

  48. M. Dupuis, E. Bauge, S. Hilaire, F. Lechaftois, S. Péru, N. Pillet, C. Robin, Eur. Phys. J. A 51, 168 (2015)

    Article  ADS  Google Scholar 

  49. Y. Horikawa, Y. Torizuka, A. Nakada, S. Mitsunobu, Y. Kojima, M. Kimura, Phys. Lett. B 36, 9 (1971)

    Article  ADS  Google Scholar 

  50. A. Johnston, T.E. Drake, J. Phys. A 8, 898 (1974)

    Article  ADS  Google Scholar 

  51. P. Junk, PhD Thesis, University of Mainz, unpublished (1970)

  52. O. Titze, Z. Phys. 220, 66 (1969)

    Article  ADS  Google Scholar 

  53. G.C. Li, M.R. Yearian, I. Sick, Phys. Rev. C 9, 1861 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pillet.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillet, N., Robin, C., Dupuis, M. et al. The self-consistent multiparticle-multihole configuration mixing. Eur. Phys. J. A 53, 49 (2017). https://doi.org/10.1140/epja/i2017-12232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12232-7

Navigation