Skip to main content
Log in

Measurements of charged hadron fluctuations in pseudo-rapidity bins in 16O-AgBr at 60 A GeV and 32S-AgBr at 200 A GeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We have measured the hadron-hadron correlation in the multiparticle production process of 16O-AgBr interactions at 60A GeV and 32S-AgBr interactions at 200A GeV in the forward and backward zone of the pseudo-rapidity space using the normalized factorial cumulant moment method. The experimental results have been compared with the Monte Carlo data generated according to the independent emission model. The results reveal that the observed correlation between the produced hadrons is purely dynamical. Correlation is found to be stronger in the backward zone than that in the forward zone of the pseudo-rapidity space for both interactions. Factorial cumulant moments for the experimental data show a power law rise with decreasing phase space bin size. The results obtained from the experimental data have also been compared with those obtained from analyzing FRITIOF data. Though FRITIOF data itself show the presence of a measured correlation among the hadrons, in most of the cases the values of the factorial cumulant moments are much less than the experimental values and they remain constant with phase space bin size. The study might hint towards the Bose-Einstein correlation as the origin of the observed behavior of the measured correlation. The failure of FRITIOF data to reproduce the exact experimental behavior in terms of factorial cumulant moment also supports this notion as the model does not take the BE correlation into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Arsene et al., Nucl. Phys. A 757, 1 (2005)

    Article  ADS  Google Scholar 

  2. B.B. Back et al., Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  3. J. Adams et al., Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  4. K. Adcox et al., Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  5. S. Bhattacharyya et al., J. Phys. G: Nucl. Part. Phys. 41, 075106 (2014)

    Article  ADS  Google Scholar 

  6. S.S. Adler et al., Phys. Rev. C 76, 034903 (2007)

    Article  ADS  Google Scholar 

  7. STAR Collaboration (J. Adams et al.), Phys. Rev. C 75, 034901 (2007)

    Article  Google Scholar 

  8. E. Braidot, Nucl. Phys A 854, 168 (2011)

    Article  ADS  Google Scholar 

  9. for the STAR Collaboration (P.K. Netrakanti), Nucl. Phys A 854, 102 (2011)

    Article  Google Scholar 

  10. P. Bozek, W. Broniowski, Phys. Rev. Lett. 109, 062301 (2012)

    Article  ADS  Google Scholar 

  11. S. Gavin, G. Moschelli, Phys. Rev. C 85, 014905 (2012)

    Article  ADS  Google Scholar 

  12. H. Bialkowska, Acta Phys. Pol. C 42, 1359 (2011)

    Article  Google Scholar 

  13. M.S. Nilsson et al., Phys. Rev. C 84, 054006 (2011)

    Article  ADS  Google Scholar 

  14. P. Carruthers et al., Phys. Lett. B 254, 258 (1991)

    Article  ADS  Google Scholar 

  15. A. Stuart, J.K. Ord, Kendall’s Advanced Theory of Statistics, Vol. 1, Distribution Theory, 5th edition (Oxford University Press, Oxford, 1987) (see page 87 for a list of first ten cumulants).

  16. G. Abbiendi et al., Eur. Phys. J. C 11, 239 (1999)

    Article  ADS  Google Scholar 

  17. P. Carruthers, H. Eggers, I. Sarcevic, Phys. Rev. C 44, 1629 (1991)

    Article  ADS  Google Scholar 

  18. EHS/NA22 Collaboration (N. Agababyan et al.), Z Phys. C 59, 405 (1993)

    Article  Google Scholar 

  19. M. Charlet, Multiparticle Correlation in $\pi^+{p}$ and $k^{+}p$ interactions at 250 GeV/c, PhD thesis Nijmegen University, unpublished (1994)

  20. EHS/NA22 Collaboration (N. Agababyan et al.), Phys. Lett. B 332, 458 (1994)

    Article  ADS  Google Scholar 

  21. E665 Collaboration (M. Adams et al.), Phys. Lett. B 335, 535 (1994)

    Article  ADS  Google Scholar 

  22. P.L. Jain, G. Singh, Nucl. Phys. A 596, 700 (1996)

    Article  ADS  Google Scholar 

  23. D. Ghosh et al., J. Phys. G: Nucl. Part. Phys. 39, 105101 (2012)

    Article  ADS  Google Scholar 

  24. G. Singh et al., Phys. Rev. Lett. 61, 1073 (1988)

    Article  ADS  Google Scholar 

  25. K. Sengupta et al., Phys. Lett. B 213, 548 (1988)

    Article  ADS  Google Scholar 

  26. K. Sengupta, P.L. Jain, G. Sing, S.N. Kim, Phys. Lett. B 236, 219 (1989)

    Article  ADS  Google Scholar 

  27. C.F. Powell, P.H. Fowler, D.H. Perkins, Study of elementary particles by the photographic method (Pergamon, Oxford, 1959) pp. 450--464 and references therein

  28. D. Ghosh, A.K. Jafry, A. Deb, S. Sarkar, R. Chattopadhyay, S. Das, Phys. Rev. C 59, 2286 (1999)

    Article  ADS  Google Scholar 

  29. D. Ghosh, A. Deb, S. Bhattacharyya, J. Phys. G: Nucl. Part. Phys. 38, 065105 (2011)

    Article  ADS  Google Scholar 

  30. D. Ghosh, M. Lahiri, A. Deb, K. Purkait, B. Biswas, J. Roychoudhury, R. Chatterjee, A.K. Jafry, Phys. Rev. C 52, 2092 (1995)

    Article  ADS  Google Scholar 

  31. D. Ghosh, A. Deb, S. Bhattacharyya, J. Phys. G: Nucl. Part. Phys. 38, 065105 (2011)

    Article  ADS  Google Scholar 

  32. A. Bialas, R. Peschanski, Nucl. Phys. B 273, 703 (1986)

    Article  ADS  Google Scholar 

  33. A. Bialas, M. Gazdzicki, Phys. Lett. B 252, 483 (1990)

    Article  ADS  Google Scholar 

  34. B. Nilsson-Almqvist, E. Stenlund, Comput. Phys. Commun. 43, 387 (1987)

    Article  ADS  Google Scholar 

  35. B. Andersson, G. Gustafson, B. Nilsson-Almqvist, Nucl. Phys. B 281, 289 (1987)

    Article  ADS  Google Scholar 

  36. S. Dhamija, M. Kaur, S. Dahiya, J. Phys. G: Nucl. Part. Phys. 28, 1239 (2002)

    Article  ADS  Google Scholar 

  37. Alessandro De Angelis, Peter Lipa, Wolfgang Ochs, Fractal structure and intermittency in multiparticle production, in Proceeding of the Joint International Lepton-Photon Symposium, Vol. 1 (1991) p. 724

  38. A. Bialas, Summary talk in the Proceedings of the Ringberg Workshop

  39. R.C. Hwa, W. Ochs, N. Schmitz (Editors), Fluctuations and Fractal Structure (World Scientific, Singapore, 1992)

  40. P. Carruthers et al., Phys. Lett. B 222, 487 (1989)

    Article  ADS  Google Scholar 

  41. N. Neumeister et al., Z. Phys. C 60, 633 (1993)

    Article  ADS  Google Scholar 

  42. M. Charlet, Yad. Fiz. 56, 79 (1993) (Sov. J. Nucl. Fiz. 56

    Google Scholar 

  43. I.V. Andreev et al., Phys. Lett. B 316, 583 (1993)

    Article  ADS  Google Scholar 

  44. Tadeusz Wibig, Phys. Rev. D 53, 3586 (1996)

    Article  Google Scholar 

  45. I.V. Andreev et al., Phys. Rev. Lett. 67, 3475 (1991)

    Article  ADS  Google Scholar 

  46. M.G. Bowler, Phys. Lett. B 276, 237 (1992)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarnapratim Bhattacharyya.

Additional information

Communicated by M. Guidal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoumik, G., Bhattacharyya, S., Deb, A. et al. Measurements of charged hadron fluctuations in pseudo-rapidity bins in 16O-AgBr at 60 A GeV and 32S-AgBr at 200 A GeV. Eur. Phys. J. A 51, 78 (2015). https://doi.org/10.1140/epja/i2015-15078-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15078-y

Keywords

Navigation