Skip to main content
Log in

Multiplicity fluctuations and correlations in \(^{16}\)O–AgBr collisions at AGS and SPS energies

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Dependence of multiplicity distributions (MDs) and their moments \(\sigma \), C\(_2\), \(\gamma _2\) and f\(_2\) on the width and position of pseudorapidity(\(\eta \)) windows are examined by analyzing the experimental data on the interactions of AgBr nuclei with \(^{16}\)O beam at 14.6A GeV from AGS, BNL and at 60A and 200A GeV from SPS, CERN. The findings indicate the presence of correlations and fluctuations of dynamical origin. The results also suggest that these features of the data, if looked into using the data of limited centrality, where geometrical fluctuations due to impact parameter variations are under control, might lead to some interesting conclusions on the strength and length of the correlations present. The study of intensive variable–the scaled variance (\(\omega \)) in two pseudorapidity windows of varying widths, one placed in forward and the other in the backward \(\eta \) regions, suggests that MDs in the backward \(\eta \) region are rather non smooth and wider as compared to that in the forward \(\eta \) region and the correlations present are of short range in nature. The ranges of the correlations are, however, observed to increase with increasing beam energy. The results based on the experimental data are nicely supported by AMPT model. URQMD model, however, predicts somewhat wider MDs as compared to the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

This manuscript has associated data in a data repository. [Authors’ comment: The data used for the reported findings in this study are available with the corresponding author and may be provided on request.]

References

  1. H.L. Li, C.-B. Yang, Chin. Phys. C40, 014102 (2016). arXiv:1411.4872v1

  2. Z. Fedor, S.D. Katz, J. High Energy Phys. 04, 50 (2004)

    Article  ADS  Google Scholar 

  3. S. Ejiri, Phys. Rev. D 78, 074507 (2008)

    Article  ADS  Google Scholar 

  4. R.V. Gavai, S. Gupta, Phys. Rev. D 78, 114503 (2008)

    Article  ADS  Google Scholar 

  5. Y. Hidaka, N. Yamamoto, J. Phys.: Confer. Ser. 432, 012017 (2013)

    Google Scholar 

  6. B. Mohanty, J. Phys.: Nucl. Pat. Phys. G38, 124023 (2011)

    Article  ADS  Google Scholar 

  7. R.A. Lacey, N.N. Ajitanand, J.M. Alexander et al., Phys. Rev. Lett. 98, 092301 (2007)

    Article  ADS  Google Scholar 

  8. S.A. Bass, H. Peterson, C. Quammen et al., Centr. Eur. J. Phys. 10, 1278 (2012)

    ADS  Google Scholar 

  9. V.L. Ginzburg, L.D Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950). [English translation in: L.D. Landau, “Collected papers,” Oxford: Pergamon Press (1965) 546]

  10. L.P. Gor’kov, Zh. Eksp, Teor. Fiz. 36, 1918 (1959)

  11. L.P. Gor’kov, Sov. Phys. JETP 9, 1364 (1959)

  12. R.C. Hwa, Phys. Rev. D 47, 2773 (1993)

    Article  ADS  Google Scholar 

  13. R.C. Hwa, Phys. Rev. C 50, 383 (1994)

    Article  ADS  Google Scholar 

  14. C.B. Yang, X. Cai, Phys. Rev. C 61, 014902 (2000)

    Article  ADS  Google Scholar 

  15. M.I. Gorenstein, Phys. Part. Nucl. 39, 1102 (2008)

    Article  Google Scholar 

  16. I.N. Mishustin, Phys. Rev. Lett. 82, 4779 (1999)

    Article  ADS  Google Scholar 

  17. N. Heiselberg, A.D. Jackson, Phys. Rev. C 63, 064904 (2001)

    Article  ADS  Google Scholar 

  18. M. Gaździki, M.I. Gorentein, S. Mrówezyński, Phys. Lett. B585, 115 (2004)

  19. M.A. Stephanov, Acta Phys. Polon. B35, 2939 (2004)

    ADS  Google Scholar 

  20. E.A. De Wolf, I.M. Dremin, W. Kittel, Phys. Rep. 270, 1–141 (1996)

    Article  ADS  Google Scholar 

  21. W. Kittel, E.A. De Wolf, Soft multihadron dynamics, Singapore (World Scientific, USA, 2005)

  22. A. Chandra, B. Ali, S. Ahmad, Adv. High. Energy Phys. 2019, 3905376 (2019)

  23. J. Bächler et al., NA35 Coll., Z. Phys. C56, 347 (1992)

  24. M.I. Adamovich et al., EMU01 Coll. Phys. Rev. Lett. 65, 412 (1990)

  25. M.I. Adamovich et al., EMU01 Coll., Z. Phys. C56, 509 (1992)

  26. M.I. Adamovich et al., EMU01 Coll., J. Phys G22, 1469 (1996)

  27. M.I. Adamovich et al., EMU01 Coll. Phys. Lett. B227, 285 (1989)

    Article  ADS  Google Scholar 

  28. M.I. Adamovich et al., EMU01 Coll. Phys. Lett. B201, 397 (1988)

    Article  ADS  Google Scholar 

  29. M. Rybczynski, NA49 Coll. J. Phys. G35, 104091 (2008)

    Article  ADS  Google Scholar 

  30. B. Ali, S. Khan, A. Chandra et al., Int. J. Mod. Phys. E28, 1950018 (2019)

    Article  ADS  Google Scholar 

  31. M.M. Shakeel Ahmad, S. Ahmad, M.M. Khan, S. Khan et al., Int. J. Mod. Phys. E23, 1450065 (2014)

  32. S. Ahmad, A. Chandra, A. Kumar et al., Eur. Phys. Lett. 112, 42001 (2015)

    Article  ADS  Google Scholar 

  33. S. Ahmad, S. Khan, A. Kumar et al., Adv. High. Energy Phys. 2018, 6414627 (2018)

  34. Z.-W. Lin, Z.-W. Lin, C. Ming Ko, B.-A. Li et al., Phys. Rev. C72, 064901 (2005)

  35. B. Zhang, B. Zhang, C. Ming Ko, B.-A. Li et al., Phys. Rev. C61, 067901 (2000)

  36. M. Bleicher E. Zabrodin, C. Spieles et al., J. Phys. G25, 1839 (1999)

  37. S.A. Bass, M. Belkacem, M. Bleicher et al., Progr. Part. Nucl. Phys. 41, 225 (1988)

    Google Scholar 

  38. M.I. Adamovich et al., EMU01 Coll. Phys. Lett. B242, 512 (1990)

    Article  ADS  Google Scholar 

  39. R. Albrecht et al., WA80 Coll. Z. Phys. C45, 31 (1989)

    Google Scholar 

  40. R.C. Hwa, Phys. Lett. B201, 165 (1988)

    Article  ADS  Google Scholar 

  41. R.C. Hwa, Phys. Rev. D37, 2451 (1988)

    ADS  Google Scholar 

  42. R.C. Hwa, Int. Conf. on Phys. and Astrophys. of QGP (World Scientific, Singapore, 1988), p. 341

  43. R.C. Hwa, Int. J. Mod. Phys. A4, 481 (1989)

    Article  ADS  Google Scholar 

  44. T. Akesson, 24\(^{th}\) Int. Conf. on High En. Phys, Springer: Verlag Berlin Heidelberg, 1989, p1382

  45. R.C. Hwa, Z. Phys. C38, 277 (1988)

    ADS  Google Scholar 

  46. A. Bialas, R. Peschanski, Nucl. Phys. B 273, 703 (1986)

    Article  ADS  Google Scholar 

  47. A. Bialas, R. Peschanski, Nucl. Phys. B 308, 857 (1988)

    Article  ADS  Google Scholar 

  48. M.I. Adamovich, M.M. Aggarwal, Y.A. Alexandrov et al., Phys. Rev. D47, 3726 (1993)

    ADS  Google Scholar 

  49. K. Grebieszkow, NA49 Coll. arXiv:1904.03165v1

  50. S. Samanta, T. Czopowicz, M. Gazdzicki, Nucl. Phys. A 1015, 122299 (2021). arXiv:2105.00344v2

    Article  Google Scholar 

  51. T.H. Brunett et al., JACEE Coll. Phys. Rev. Lett. 50, 2062 (1983)

    Article  ADS  Google Scholar 

  52. N.G. Antoniou, Nucl. Phys. A 761, 149 (2005)

    Article  ADS  Google Scholar 

  53. P. Carruthers, H.C. Eggers, Ina Sarcevic, Phys. Lett. B254, 258 (1991)

  54. R.M. Weiner, Z. Phys. C38, 199 (1988)

    ADS  Google Scholar 

  55. H.C. Eggers, P. Carruthers, P. Lipa et al., Phys. Rev. D44, 1975 (1991)

    ADS  Google Scholar 

  56. P. Carruthers, H.C. Eggers, Ina Sarcevic, Phys. Rev. C44, 1629 (1991)

  57. K. Sengupta, G. Singh, P.L. Jain et al., Phys. Lett. B213, 548 (1988)

    Article  ADS  Google Scholar 

  58. J. Bartke et al., Poster, at Quark matter 91 Conf,vol. E42 (Gatlinburg, 1991)

  59. A. Bamberger et al., NA35 Coll. Phys. Lett. B203, 203 (1988)

    Google Scholar 

  60. D. Ferenc, Nucl. Phys. A544, 531c (1992)

    Article  ADS  Google Scholar 

  61. Maja Maćkowiak-Pawlowska, NA61/SHINE Coll., Acta Phys. Polon. Supp. 10, 657 (2017). arXiv:1610.03838v1

  62. D.K. Mishra, P. Garg, P.K. Netrakanti et al., Adv. High. Energy Phys. 2017, 1453045 (2017)

  63. M. Maćkowiak-Pawlowska, A. Wilczek, NA61 Coll., J. Phys. Conf. Ser. 509, 012044 (2014)

  64. M. Gazdzicki, P. Seyboth, Acta. Phys. Polon. B47, 1201 (2016)

    Article  ADS  Google Scholar 

  65. D. Prokhorova, NA61/SHINE Coll., in 3rd Int. Confer. on Particle Physics and Astrophysics, KnE Energy, vol. 3, no. 1, p. 217. arXiv:1801.06690v1

  66. K. Grebieszkow, NA49 Coll. Nucl. Phys. A830, 547c (2009)

    Article  ADS  Google Scholar 

  67. A. Motornenko, K. Grebieszkow, E. Bratkovskaya et al., J. Phys. G45, 115104 (2018). arXiv:1711.07789v2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakeel Ahmad.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, B., Singh, S. & Ahmad, S. Multiplicity fluctuations and correlations in \(^{16}\)O–AgBr collisions at AGS and SPS energies. Eur. Phys. J. Plus 137, 249 (2022). https://doi.org/10.1140/epjp/s13360-022-02443-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02443-x

Navigation