Skip to main content
Log in

Event-by-Event pseudorapidity fluctuation analysis: An outlook to multiplicity and phase space dependence

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A detailed study of Event-by-Event pseudorapidity fluctuation of the pions produced in 16O -AgBr interactions at 60A GeV and 32S -AgBr interactions at 200A GeV has been carried out in terms of \( \phi\) , a variable defined as a measure of fluctuation. Non-zero \( \phi\) values indicate the presence of strong correlation among the pions for both interactions. Multiplicity and rapidity dependence of the Event-by-Event pseudorapidity fluctuation has been investigated. A decrease of \( \phi\) with average multiplicity and increase of the same variable with pseudorapidity width are observed. Decrease of \( \phi\) with average multiplicity is concluded as the particle emission by several independent sources occurs for higher-multiplicity events. The increase in \( \phi\) values with pseudorapidity width, taken around central rapidity, might hint towards the presence of long-range correlation and its dominance over short range one. We have compared our experimental results with Monte Carlo simulation generated assuming independent particle emission. Comparison shows that the source of correlation and fluctuation is the dynamics of the pion production process. We have also compared our results with events generated by FRITIOF code. Such events also show the presence of fluctuation and correlation; however they fail to replicate the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Luzum et al., J. Phys. G: Nucl. Part. Phys. 41, 063102 (2014)

    Article  ADS  Google Scholar 

  2. Y. Aoki et al., Nature 443, 675 (2006)

    Article  ADS  Google Scholar 

  3. P. Jacobs, D. Kharzeev, B. Muller, J. Nagle, K. Rajagopal, S. Vigdor, arXiv:0705.1930 [nucl-ex]

  4. S. Jeon et al., Phys. Rev. C 73, 014905 (2006)

    Article  ADS  Google Scholar 

  5. M. Asakawa et al., Phys. Rev. Lett. 85, 2072 (2000)

    Article  ADS  Google Scholar 

  6. L.F. Babichev, A.N. Khmialeuski, Study the signals of QGP using Monte Carlo for Pb+Pb for Energy from 500 to 2000 GeV, in Foundations & Advances in Nonlinear Science: Proceedings of 15th International Conference-School, September 20-23, 2010, Minsk, edited by V.I. Kuvshinov, G.G. Krylov (Education and Upbringing, 2010)

  7. M. Weber for the ALICE collaboration, J. Phys.: Conf. Ser. 389, 012036 (2012)

    ADS  Google Scholar 

  8. M. Gazdzicki, S. Mrówczynski, Z. Phys. C 54, 127 (1992)

    Article  ADS  Google Scholar 

  9. E.V. Shuryak, Phys. Lett. B 423, 9 (1998)

    Article  ADS  Google Scholar 

  10. A. Bialas, V. Koch, Phys. Lett. B 456, 1 (1999)

    Article  ADS  Google Scholar 

  11. NA49 Collaboration (H. Appelshäuser et al.), Phys. Lett. B 459, 679 (1999)

    Article  ADS  Google Scholar 

  12. G. Baym, H. Heiselberg, Phys. Lett. B 469, 7 (1999)

    Article  ADS  Google Scholar 

  13. G. Danilov, E. Shuryak, nucl-th/9908027

  14. T. Anticic et al., Phys. Rev. C 70, 034902 (2004)

    Article  ADS  Google Scholar 

  15. S. Jeon, V. Koch, Event-by-event fluctuations, in Quark Gluon Plasma, edited by R.C. Hwa, X.N. Wang (World Scientific, Singapore, 2003) p. 430, arXiv:hep-ph/0304012

  16. H. Heiselberg, Phys. Rep. 351, 161 (2001)

    Article  ADS  Google Scholar 

  17. T.K. Nayak, J. Phys. G: Nucl. Part. Phys. 32, S187 (2006) arXiv:nucl-ex/060802

    Article  ADS  Google Scholar 

  18. M. Stephanov et al., Phys. Rev. Lett. 81, 4816 (1998)

    Article  ADS  Google Scholar 

  19. M. Stephanov et al., Phys. Rev. D 61, 114028 (1999)

    Article  ADS  Google Scholar 

  20. S. Bhattacharyya et al., Phys. Lett. B 726, 194 (2013)

    Article  ADS  Google Scholar 

  21. G. Roland, Nucl. Phys. A 638, 91c (1998)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Belkacem, arXiv:nucl-th/9903017v2, 22 April 1999

  23. ATLAS Collaboration (G. Aad), arXiv:1305.2942v1 [hep-ex].

  24. S.A. Voloshin et al., Phys. Rev. C 60, 024901 (1999)

    Article  ADS  Google Scholar 

  25. B. Abelev et al., Eur. Phys. J. C 74, 3077 (2014)

    Article  ADS  Google Scholar 

  26. J. Adams et al., Phys. Rev. C 72, 044902 (2005)

    Article  ADS  Google Scholar 

  27. KLM Collaboration (M.L. Cherry et al.), Acta Phys. Pol. B 29, 2129 (1998)

    Google Scholar 

  28. G. Singh et al., Phys. Rev. Lett. 61, 1073 (1988)

    Article  ADS  Google Scholar 

  29. K. Sengupta et al., Phys. Lett. B 213, 548 (1988)

    Article  ADS  Google Scholar 

  30. K. Sengupta et al., Phys. Lett. B 236, 219 (1989)

    Article  ADS  Google Scholar 

  31. C.F. Powell, P.H. Fowler, D.H. Perkins, Study of Elementary Particles by the Photographic Method (Pergamon, Oxford, 1959) pp. 450--464 and references therein

  32. D. Ghosh et al., Phys. Rev. C 59, 2286 (1999)

    Article  ADS  Google Scholar 

  33. D. Ghosh et al., J. Phys. G: Nucl. Part. Phys. 38, 065105 (2011)

    Article  ADS  Google Scholar 

  34. D. Ghosh et al., Phys. Rev. C 52, 2092 (1995)

    Article  ADS  Google Scholar 

  35. G. Roland, NA49 Collaboration, Proceedings of the Hirschegg Workshop on QCD Phase Transitions, edited by H. Feldmeier, Joern Knoll, W. Noerenberg, J. Wambach (GSI, Darmstadt, 1997) p. 309

  36. M. Gazdzicki et al., Eur. Phys. J. C 6, 365 (1999)

    Article  ADS  Google Scholar 

  37. M. Bleicher et al., Phys. Lett. B 435, 9 (1998)

    Article  ADS  Google Scholar 

  38. S. Mrówczynski, Phys. Lett. B 439, 6 (1998)

    Article  ADS  Google Scholar 

  39. D. Ghosh et al., J. Phys. G: Nucl. Part. Phys. 39, 105101 (2012)

    Article  ADS  Google Scholar 

  40. B. Nilsson-Almqvist, E. Stenlund, Comput. Phys. Commun. 43, 387 (1987)

    Article  ADS  Google Scholar 

  41. B. Andersson et al., Nucl. Phys. B 281, 289 (1987)

    Article  ADS  Google Scholar 

  42. S. Dhamija et al., J. Phys. G: Nucl. Part. Phys. 28, 1239 (2002)

    Article  ADS  Google Scholar 

  43. D. Ghosh et al., Pramana J. Phys. 77, 297 (2011)

    Article  ADS  Google Scholar 

  44. D. Chanda et al., Phys. Rev. C 71, 034904 (2005)

    Article  ADS  Google Scholar 

  45. B. Nilsson-Almqvist et al., Comput. Phys. Commun. 43, 387 (1987)

    Article  ADS  Google Scholar 

  46. A. Beiser, Rev. Mod. Phys. 24, 273 (1952)

    Article  ADS  Google Scholar 

  47. C. Adler, arXiv:nucl-ex/0206008v1 (2002)

  48. I.C. Arsene, arXiv:0911.2586v2 [nucl-ex] (2009)

  49. S. Bhattacharyya et al., J. Phys. G: Nucl. Part. Phys. 40, 025105 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Pierroutsakou

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoumik, G., Bhattacharyya, S., Deb, A. et al. Event-by-Event pseudorapidity fluctuation analysis: An outlook to multiplicity and phase space dependence. Eur. Phys. J. A 52, 196 (2016). https://doi.org/10.1140/epja/i2016-16196-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16196-8

Navigation