Skip to main content
Log in

Compound nucleus evaporative decay as a probe for the isospin dependence of the level density

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The evaporative decay of the compound nucleus 139Eu produced by the 180MeV 32S + 107Ag reaction was studied with the aim to test the empirical isospin expressions of the level density, recently appeared in the literature. We measured light charged particle spectra and angular correlations in coincidence with the evaporation residues and the invariant velocity distribution of the evaporation residues. In addition, an independent experiment was performed on the reaction 32S + 109Ag at the same incident energy. Evaporation residue angular distribution was measured and the fusion-evaporation cross-section was determined. All the measured quantities are compared with the predictions of different level density prescriptions: a) isospin independence, b) a dependence from N - Z and c) a dependence from Z-Z0 as proposed by Al-Quraishi et al. Results show that the predictions of the Z-Z0 dependence are far off the experimental data for all the measured observables. Regarding the isospin independent prescription and the N - Z dependence, although no great differences appear between their predictions the N - Z prescription seems to better describe the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Bethe, Phys. Rev. 50, 332 (1936)

    Article  ADS  Google Scholar 

  2. G. Nebbia et al., Phys. Lett. B 167, 20 (1986)

    Article  ADS  Google Scholar 

  3. K. Hagel et al., Nucl. Phys. A 486, 429 (1988)

    Article  ADS  Google Scholar 

  4. D. Fabris et al., Phys. Rev. C 50, R1261 (1994)

    Article  ADS  Google Scholar 

  5. M. Kaur, V. Singh, M. Thakur, G. Singh, Proc. DAE Symp. Nucl. Phys. 56, 622 (2011)

    Google Scholar 

  6. A. Bohr, B.R. Mottelson, Nuclear structure, Vol. 1 (Benjamin, New York, 1975)

  7. H. Feshbach, Theoretical Nuclear Physics-Nuclear Reactions, edited by J. Wiley (1992)

  8. S.I. Al-Quraishi, S.M. Grimes, T.N. Massey, D.A. Resler, Phys. Rev. C 63, 065803 (2001) DOI:10.1103/PhysRevC.63.615803

    Article  ADS  Google Scholar 

  9. S.I. Al-Quraishi, S.M. Grimes, T.N. Massey, D.A. Resler, Phys. Rev. C 67, 015803 (2003) DOI:10.1103/PhysRevC.67.015803

    Article  ADS  Google Scholar 

  10. ENDF database, M.R. Bhat, in Evaluated Nuclear Structure Data File (ENSDF), Nuclear Data for Science and Technology, edited by S.M. Qaim (Springer-Verlag, Berlin, 1992) p. 817

  11. S.M. Grimes et al., AIP Conf. Proc. 1005, 57 (2007) DOI:10.1063/1.2920746

    Article  ADS  Google Scholar 

  12. B.V. Zhuravlev, A.A. Lychagin, N.N. Titarenko, Phys. At. Nuclei 69, 363 (2006) DOI:10.1134/s106377880603001x

    Article  ADS  Google Scholar 

  13. R.J. Charity et al., Phys. Rev. C 67, 044611 (2003) DOI:10.1103/PhysRevC.67.044611

    Article  ADS  Google Scholar 

  14. A. Brondi et al., EPJ Web of Conferences 2, 04002 (2010) DOI:10.1051/epjconf/20100204002

    Article  Google Scholar 

  15. E. Fioretto et al., IEEE Trans. Nucl. Sci. 44, 1017 (1997)

    Article  ADS  Google Scholar 

  16. J.F. Ziegler, J.P. Biersack, U. Littmark, Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)

  17. A. Ordine et al., IEEE Trans. Nucl. Sci. 45, 873 (1998)

    Article  ADS  Google Scholar 

  18. http://root.cern.ch/

  19. LILITA program was written by J. Gomez del Campo, R.G. Stockstad, Oak Ridge National Laboratory Report No. TM7295 (1981) unpublished

  20. E. Vardaci et al., Eur. Phys. J. A 43, 127 (2010) DOI:10.1140/epja/i2009-10912-5

    Article  ADS  Google Scholar 

  21. A. Di Nitto et al., Eur. Phys. J. A 47, 83 (2011) DOI:10.1140/epja/i2011-11083-6

    Article  ADS  Google Scholar 

  22. J.R. Huizenga, G. Igo, Nucl. Phys. 29, 462 (1961)

    Article  Google Scholar 

  23. F.G. Perey, Phys. Rev. 131, 745 (1963) DOI:10.1103/PhysRev.131.745

    Article  ADS  Google Scholar 

  24. D. Willmore, P.E. Hudson, Nucl. Phys. 55, 673 (1964)

    Article  Google Scholar 

  25. A.J. Sierk, Phys. Rev. C 33, 2039 (1986) DOI:10.1103/PhysRevC.33.2039

    Article  ADS  Google Scholar 

  26. A. Gavron, Phys. Rev. C 21, 230 (1980) DOI:10.1103/PhysRevC.21.230

    Article  ADS  Google Scholar 

  27. A. Di Nitto, Proceeding of the 7th International Conference on Dynamical Aspects of Nuclear Fission, Smolenice Castle, Slovak Republic, 2011 (World Scientific) to be published

  28. S. Beghini et al., Nucl. Instrum. Methods Phys. Res. A 239, 585 (1985) DOI:10.1016/0168-9002(85)90040-3

    Article  ADS  Google Scholar 

  29. R.J. Charity, Phys. Rev. C 58, 1073 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Moro.

Additional information

Communicated by D. Pierroutsakou

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moro, R., Brondi, A., Gelli, N. et al. Compound nucleus evaporative decay as a probe for the isospin dependence of the level density. Eur. Phys. J. A 48, 159 (2012). https://doi.org/10.1140/epja/i2012-12159-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12159-5

Keywords

Navigation