Skip to main content
Log in

Isospin influence on fragments production in 78Kr + 40Ca and 86Kr + 48Ca collisions at 10 MeV/nucleon

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In heavy ion collisions at low energy (E/A < 10–15 MeV/nucleon) the N/Z ratio in the entrance channel is closely related to the isospin degree of freedom and can influence the reaction mechanisms and consequently the production of the fragments in the exit channel. We analyse the fragment production cross sections in the reactions 86Kr + 48Ca and 78Kr + 40Ca , at the laboratory energy of 10 MeV/nucleon. The experiment was conducted at the INFN Laboratori Nazionali del Sud in Catania, by using the \( 4\pi\) detector CHIMERA. For the two reactions, elastic scattering measurements are performed to extract the normalization factor used to evaluate the absolute cross sections. Velocity and energy spectra, mass and charge distributions, as well as dynamic features of reaction products, are studied. The study of the characteristics of mass and charge distributions, energy and velocity spectra of the reaction products shows mainly a relaxed component, related to fusion reaction followed by evaporation or binary decay. Nevertheless signals ascribable to a non equilibrated component are present. Structure effects are evident in the staggered shape of emitted fragments cross sections and are more pronounced in the neutron poor system. The analysis highlights clear differences for the two systems in the contributions arising from different reaction mechanisms. Besides, a study of the overall influence from the entrance channel energy is performed. Comparisons to DNS (DiNuclear System) and GEMINI++ models are reported. The data analysis indicates a slightly higher fusion-evaporation cross section and a strongly pronounced probability of fission-like processes for the neutron poor system with respect to the neutron rich one. The neutron enrichment seems thus to limit the formation of the composite system and to inhibit the fission decay channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Feshbach, Theoretical Nuclear Physics, Nuclear Reactions (J. Wiley & Sons, INC, 1992)

  2. U. Mosel, Treatise on Heavy Ion Science, Vol. 2, edited by D.A. Bromley (Springer, 1985) p. 3

  3. P. Eudes, Z. Basrak, F. Sebille, V. de la Mota, G. Royer, Phys. Rev. C 90, 034609 (2014)

    ADS  Google Scholar 

  4. G. Cardella et al., Phys. Rev. C 85, 064609 (2012)

    ADS  Google Scholar 

  5. K. Godbey, A.S. Umar, C. Simenel, Phys. Rev. C 95, 011601 (2017)

    ADS  Google Scholar 

  6. I. Lombardo et al., Phys. Rev. C 84, 024613 (2011)

    ADS  Google Scholar 

  7. P. Russotto et al., Phys. Rev. C 91, 014610 (2015)

    ADS  Google Scholar 

  8. L.G. Sobotka, M.L. Padgett, G.J. Wozniak, G. Guarino, A.J. Pacheco, L.G. Moretto, Y. Chan, R.G. Stokstad, I. Tserruya, S. Wald, Phis. Rev. Lett. 51, 2187 (1983)

    ADS  Google Scholar 

  9. G. Ademard et al., Phys. Rev. C 83, 054619 (2011)

    ADS  Google Scholar 

  10. G. Casini et al., Phys. Rev. C 86, 011602 (2012)

    ADS  Google Scholar 

  11. M. D’Agostino et al., Nucl. Phys. A 861, 47 (2011)

    ADS  Google Scholar 

  12. G. Politi et al., EPJ Web of Conferences 21, 02003 (2012)

    Google Scholar 

  13. M. La Commara et al., EPJ Web of Conferences 31, 2012 (2012)

    Google Scholar 

  14. S. Pirrone et al., AIP Conf. Proc. 1524, 7 (2013)

    ADS  Google Scholar 

  15. M. La Commara et al., EPJ Web of Conferences 66, 03052 (2014)

    Google Scholar 

  16. B. Gnoffo, Nuovo Cimento C 39, 275 (2016)

    ADS  Google Scholar 

  17. A. Pagano et al., Nucl. Phys. A 734, 504 (2004)

    ADS  Google Scholar 

  18. E. De Filippo, A. Pagano, Eur. Phys. J. A 50, 32 (2014)

    ADS  Google Scholar 

  19. G. Peilert, H. Stocker, W. Greiner, Rep. Prog. Phys. 57, 6 (1994)

    Google Scholar 

  20. A. Pagano, Proceedings of the XLII International Winter Meeting on Nuclear Physics, Bormio (Italy), edited by I. Iori (Università degli Studi di Milano, Ricerca Scientifica ed Educazione Permanente, 2004) suppl. 123, p. 359

  21. M. Alderighi et al., IEEE Trans. Nucl. Sci. 53, 279 (2006)

    ADS  Google Scholar 

  22. M. Alderighi et al., IEEE Trans. Nucl. Sci. 52, 1624 (2005)

    ADS  Google Scholar 

  23. R. Bassini et al., IEEE Nucl. Sci. Symp. Conf. Record N14, 173 (2006)

    Google Scholar 

  24. K. Summerer, B. Blank, Phys. Rev. C 61, 034607 (2000)

    ADS  Google Scholar 

  25. W.W. Wilcke, J.R. Birkelund, H.J. Wollersheim, A.D. Hoover, J.R. Huizenga, W.U. Schroeder, L.E. Tubbs, At. Data Nucl. Data Tables 25, 389 (1980)

    ADS  Google Scholar 

  26. I. Lombardo et al., Nucl. Phys. A 834, 458 (2010)

    ADS  Google Scholar 

  27. H. Morgenstern, W. Bohen, W. Galster, K. Grabisch, A. Kyanowski, Phys. Rev. Lett. 52, 1104 (1984)

    ADS  Google Scholar 

  28. L.G. Moretto, Nucl. Phys. A 247, 211 (1975)

    ADS  Google Scholar 

  29. R.J. Charity, D.R. Bowmanand, Z.H. Liu, R.J. McDonald, M.A. McMahan, G.J. Wozniak, L.G. Moretto, S. Bradley, W.L. Kehoe, A.C. Mignerey, Nucl. Phys. A 476, 516 (1988)

    ADS  Google Scholar 

  30. K.X. Jing, L.G. Moretto, A.C. Veeck, N. Colonna, I. Lhenry, K. Tso, K. Hanold, W. Skulski, Q. Sui, G.J. Wozniak, Nucl. Phys. A 645, 203 (1999)

    ADS  Google Scholar 

  31. F. Auger, B. Berthier, A. Cunsolo, A. Foti, W. Mittig, J.M. Pascaud, E. Plagnol, J. Quebert, J.-P. Wieleczko, Phys. Rev. C 35, 190 (1987)

    ADS  Google Scholar 

  32. D. Hinde, J. Leigh, J. Bokhorst, J. Newton, R. Walsh, J. Boldeman, Nucl. Phys. A 472, 318 (1987)

    ADS  Google Scholar 

  33. V.E. Viola, K. Kwiatkowski, M. Walker, Phys. Rev. C 31, 1550 (1985)

    ADS  Google Scholar 

  34. C. Beck, A.S. de Toledo, Phys. Rev. C 53, 1989 (1996)

    ADS  Google Scholar 

  35. D. Hinde, A. Berriman, M. Dasgupta, J. Leigh, J. Mein, C. Morton, J. Newton, Phys. Rev. C 60, 054602 (1999)

    ADS  Google Scholar 

  36. B. Gnoffo, Nuovo Cimento C, in preparation

  37. B. Gnoffo et al., EPJ Web of Conferences 117, 08012 (2016)

    Google Scholar 

  38. J. Boger, J.M. Alexander, A. Elmaani, S. Kox, R.A. Lacey, A. Narayanan, D. Moses, M.A. McMahan, P.A. DeYoung, C.J. Gelderloos, Phys. Rev. C 49, 1597 (1994)

    ADS  Google Scholar 

  39. Sh.A. Kalandarov, G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. C 82, 044603 (2010)

    ADS  Google Scholar 

  40. Sh.A. Kalandarov, G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. C 83, 054611 (2011)

    ADS  Google Scholar 

  41. Sh.A. Kalandarov et al., Phys. Rev. C 84, 054607 (2011)

    ADS  Google Scholar 

  42. Sh.A. Kalandarov, G.G. Adamian, N.V. Antonenko, W. Scheid, J.P. Wieleczko, Phys. Rev. C 84, 064601 (2011)

    ADS  Google Scholar 

  43. G. Adamian, N. Antonenko, W. Scheid, Cluster in Nuclei, Vol. 2, edited by C. Beck, Lect. Notes Phys. Vol. 848 (Springer, 2012) p. 165

  44. Sh.A. Kalandarov, G.G. Adamian, N.V. Antonenko, Phys. Part. Nucl. 43, 825 (2012)

    Google Scholar 

  45. Sh.A. Kalandarov, G.G. Adamian, N.V. Antonenko, J.P. Wieleczko, Phys. Rev. C 90, 024609 (2014)

    ADS  Google Scholar 

  46. G.G. Adamian, N.V. Antonenko, Sh.A. Kalandarov, Phys. Part. Nucl. 47, 1 (2016)

    Google Scholar 

  47. Sh.A. Kalandarov, D. Lacroix, G.G. Adamian, N.V. Antonenko, J.P. Wieleczko, S. Pirrone, G. Politi, Phys. Rev. C 93, 024613 (2016)

    ADS  Google Scholar 

  48. D. Lacroix, A. VanLauwe, D. Durand, Phys. Rev. C 69, 054604 (2004)

    ADS  Google Scholar 

  49. A.V. Ignatiuk, Statistical Properties of Excited Atomic Nuclei (Energoizdat Moscow, 1983)

  50. L. Shvedov, M. Colonna, M. Di Toro, Phys. Rev. C 81, 054605 (2010)

    ADS  Google Scholar 

  51. C. Rizzo, M. Colonna, V. Baran, Phys. Rev. C 90, 054618 (2014)

    ADS  Google Scholar 

  52. H. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    ADS  Google Scholar 

  53. A.J. Sierk, Phys. Rev. Lett. 55, 582 (1985)

    ADS  Google Scholar 

  54. N. Carjan, J.M. Alexander, Phys. Rev. C 38, 1692 (1988)

    ADS  Google Scholar 

  55. D. Mancusi, R.J. Charity, J. Cugnon, Phys. Rev. C 82, 044610 (2010)

    ADS  Google Scholar 

  56. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    ADS  Google Scholar 

  57. A.Y. Rusanov, M.G. Itkis, V.N. Okolovic, Phys. At. Nucl. 60, 683 (1997)

    Google Scholar 

  58. R. Bass, Phys. Lett. B 47, 139 (1973)

    ADS  Google Scholar 

  59. R. Bass, Nucl. Phys. A 231, 45 (1974)

    ADS  Google Scholar 

  60. S. Cohen, F. Plasil, W.J. Swiatecki, Ann. Phys. 82, 557 (1974)

    ADS  Google Scholar 

  61. A. Umar, C. Simenel, W. Ye, Phys. Rev. C 96, 024625 (2017)

    ADS  Google Scholar 

  62. E. Williams et al., Phys. Rev. Lett. 120, 022501 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pirrone.

Additional information

Communicated by A. Di Pietro

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirrone, S., Politi, G., Gnoffo, B. et al. Isospin influence on fragments production in 78Kr + 40Ca and 86Kr + 48Ca collisions at 10 MeV/nucleon. Eur. Phys. J. A 55, 22 (2019). https://doi.org/10.1140/epja/i2019-12695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12695-4

Navigation