Skip to main content
Log in

A Systematic Study of Excitation Functions of Various Evaporation Residues in Heavy Ion Reactions at Moderate Excitation Energy: Incomplete Fusion vs. Complete Fusion

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Present work is an attempt to exclusively measure and study the excitation functions (EFs) of evaporation residues populated in 12C and 159Tb system at energies ≈4.5–6.5 MeV/nucleon. The stacked foil activation technique followed by offline γ-ray spectroscopy with a high-resolution HPGe detector has been employed. The experimentally measured excitation functions are compared with the theoretical predictions obtained from statistical model code PACE-4. For \(xn\) and/or \(pxn\) channels, the experimentally measured excitation functions are found to be in good agreement with theoretical predictions. However, in case of α emitting-channels, the measured EFs had significantly more production cross-section values than PACE‑4 predicated values. This enhancement in the cross-section values for these reaction channels gives clear indication of incomplete fusion of the projectile with the target. To compare the relative contributions of complete and incomplete fusion and perceive the effect of entrance channel parameters on the onset and strength of incomplete fusion, an attempt was made to estimate the incomplete fusion fraction. The incomplete fusion fraction was found to be sensitive to the projectile energy and mass asymmetry of the entrance channel. The existence of incomplete-fusion below critical angular momentum (\({{\ell }_{{{\text{crit}}}}}\)), i.e., \(\ell \leqslant {{\ell }_{{{\text{crit}}}}}\), has also been observed for this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. Kumar, M. Maiti, and S. Lahiri, “7Li-induced reaction on natMo: A study of complete versus incomplete fusion,” Phys. Rev. C 96, 014617 (2017).

    Article  ADS  Google Scholar 

  2. A. Agarwal, A. K. Jashwal, M. Kumar, S. Prajapati, S. Dutt, M. Gull, I. A. Rizvi, K. Kumar, S. Ali, A. Yadav, R. Kumar, and A. K. Chaubey, “Effect of neutron excess in the entrance channel on the system 18O + 93Nb: An experimental study relevant to incomplete-fusion dynamics,” Phys. Rev. C 103, 034602 (2021).

    Article  ADS  Google Scholar 

  3. M. Kumar, A. Agarwal, S. Prajapati, K. Kumar, S. Dutt, I. A. Rizvi, R. Kumar, and A. K. Chaubey, “Influence of projectile structure and target deformation on incomplete fusion in the 16O + 51V system,” Phys. Rev. C 100, 034616 (2020).

    Article  ADS  Google Scholar 

  4. R. Kumar, T. N. Nag, M. Maiti, and S. Sodaye, “Probing the influence of incomplete fusion in the 6Li + 89Y reaction up to 7.2 MeV/nucleon energy,” Phys. Rev. C 104, 064606 (2021).

    Article  ADS  Google Scholar 

  5. M. Cavinato, E. Fabrici, E. Gadioli, E. Gadioli Erba, P. Vergani, M. Crippa, G. Colombo, I. Redaelli, and M. Ripamonti, “Study of the reactions occurring in the fusion of 12C and 16O with heavy nuclei at incident energies below 10 MeV/nucleon,” Phys. Rev. C 52, 2577–2590 (1995).

    Article  ADS  Google Scholar 

  6. K. Wilczynski, K. Siwek-Wilczynska, J. Van Driel, S. Gonggrijp, and D. C. J. M. Hageman, et al., “Binary l-matched reactions in 14N+159Tb collisions,” Nucl. Phys. A 373, 109–140 (1982).

    Article  ADS  Google Scholar 

  7. T. Udagawa and T. Tamura, “Breakup-fusion description of massive transfer reactions with emission of fast light particles,” Phys. Rev. Lett. 45, 1311–1314 (1980).

    Article  ADS  Google Scholar 

  8. J. P. Bondorf, J. N. De, G. Fai, A. O. T. Karvinen, B. Jakobsson, and J. Randrup, “Promptly emitted particles in nuclear collisions,” Nucl. Phys. A 333, 285–301 (1980).

    Article  ADS  Google Scholar 

  9. M. Blann, “Precompound limits of linear momentum transfer in heavy ion reactions,” Phys. Rev. C 31, 295–297 (1985).

    Article  ADS  Google Scholar 

  10. A. Chauhan, M. Maiti, and S. Lahiri, “Measurement and analysis of excitation functions of the residues from 12C + 89Y: A major production route for 97Ru,” Phys. Rev. C 99, 064609 (2019).

    Article  ADS  Google Scholar 

  11. A. Chauhan and M. Maiti, “New measurement of residues from 7Li + natTa reaction within 4-6.5 MeV/nucleon: Production yield for 183Os,” Phys. Rev. C 99, 034608 (2019).

    Article  ADS  Google Scholar 

  12. O. B. Tarasov and D. Bazin, “LISE++: Radioactive beam production with in-flight separators,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 4657–4664 (2008).

    Google Scholar 

  13. A. Gavron, “Statistical model calculations in heavy ion reactions,” Phys. Rev. C 21, 230–236 (1980).

    Article  ADS  Google Scholar 

  14. K. Kumar, T. Ahmad, S. Ali, I. A. Rizvi, A. Agarwal, R. Kumar, K. S. Golda, and A. K. Chaubey, “Low-energy incomplete fusion and its sensitivity to projectile structure,” Phys. Rev. C 87, 044608 (2013).

    Article  ADS  Google Scholar 

  15. “The stopping and range of ions in matter (SRIM) code,” www.srim.org/SRIM/SRIMLEGL.htm.

  16. B. P. A. Kumar, E. T. Subramaniam, K. Singh, and R. K. Bhowmik, www.iuac.res.in/NIAS/.

  17. E. Browne and R. B. Firestone, Table of Radioactive Isotopes (Wiley, New York, 1986).

    Google Scholar 

  18. W. Hauser and H. Feshbach, “The inelastic scattering of neutrons,” Phys. Rev. 87, 366–373 (1952).

    Article  ADS  MATH  Google Scholar 

  19. R. Bass, “Nucleus-nucleus potential deduced from experimental fusion cross sections,” Phys. Rev. Lett. 39, 265–268 (1977).

    Article  ADS  Google Scholar 

  20. H. Morgenstern, W. Bohen, W. Galster, K. Grabisch, and A. Kyanowski, “Influence of the mass asymmetry on the onset of incomplete and the limit to complete fusion,” Phys. Rev. Lett. 52, 1104–1107 (1984).

    Article  ADS  Google Scholar 

  21. H. Kumar, S. A. Tali, M. A. Ansari, D. Singh, R. Ali, K. Kumar, N. P. M. Sathik, A. Ali, S. Parashari, R. Dubey, I. Bala, R. Kumar, R. P. Singh, and S. Muralithar, “Sensitivity of low-energy incomplete fusion to various entrance-channel parameters,” Eur. Phys. J. A 54, 47 (2018).

    Article  ADS  Google Scholar 

  22. S. Chakrabarty, B. S. Tomar, A. Goswami, G. K. Gubbi, S. B. Manohar, Anil Sharma, B. Bindukumar, and S. Mukherjee, “Complete and incomplete fusion reactions in the 12C + 169Tm,” Nucl. Phys. A 678, 355–366 (2000).

    Article  ADS  Google Scholar 

  23. S. Gupta, B. P. Singh, M. M. Musthafa, H. D. Bhardwaj, and R. Prasad, “Complete and incomplete fusion of 12C with 165Ho below 7 MeV/nucleon: Measurements and analysis of excitation functions,” Phys. Rev. C 61, 064613 (2000).

    Article  ADS  Google Scholar 

  24. S. Mukherjee, A. Sharma, S. Sodaye, A. Goswami, and B. S. Tomar, “Incomplete fusion in the excitation functions of 12C + 115In reactions at 4-MeV/nucleon–7‑MeV/nucleon,” Int. J. Mod. Phys. E 15, 237–245 (2006).

    Article  ADS  Google Scholar 

  25. B. B. Kumar, A. Sharma, S. Mukherjee, S. Chakrabarty, P. K. Pujari, B. S. Tomar, A. Goswami, S. B. Manohar, and S. K. Datta, “Incomplete fusion reactions in 12C + 103Rh at 4–7 MeV/nucleon,” Phys. Rev. C 59, 2923–2926 (1999).

    Article  ADS  Google Scholar 

  26. J. Wilczynski and K. S. Wilczynska, “An adiabatic nucleus-nucleus fusion potential and nuclear structure effects in sub-barrier fusion reactions,” Nucl. Phys. A 511, 429–441 (1990).

    Article  ADS  Google Scholar 

  27. A. Yadav, V. R. Sharma, P. P. Singh, R. Kumar, D. P. Singh, Unnati, M. K. Sharma, B. P. Singh, and R. Prasad, “Effect of α−Q value on incomplete fusion,” Phys. Rev. C 86, 014603 (2012).

    Article  ADS  Google Scholar 

  28. K. Hagino, N. Rowley, and A. T. Kruppa, “A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions,” Comput. Phys. Commun. 123, 143–152 (1999).

    Article  ADS  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Director IUAC, New Delhi, for providing all the necessary facilities to carry out the experiment. The authors also extend their gratitude towards the Principal, Bareilly College, Bareilly (India) for his support and interest in this work. Thanks also are due to Mr. Abhilash S.R. for his generous help during target preparation and the operating crew of the Pelletron accelerator of IUAC for providing uninterrupted and stable beam.

Funding

Avinash Agarwal is thankful to Science and Engineering Research Board (SERB)-Department of Science and Technology (DST), New Delhi—INDIA for financial support through research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Agarwal.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avinash Agarwal, Jashwal, A.K., Rizvi, I.A. et al. A Systematic Study of Excitation Functions of Various Evaporation Residues in Heavy Ion Reactions at Moderate Excitation Energy: Incomplete Fusion vs. Complete Fusion. Phys. Part. Nuclei 54, 677–684 (2023). https://doi.org/10.1134/S1063779623040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623040032

Navigation