Skip to main content
Log in

A covariant model for the nucleon and the Δ

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The covariant spectator formalism is used to model the nucleon and the Δ(1232) as a system of three constituent quarks with their own electromagnetic structure. The definition of the “fixed-axis” polarization states for the diquark emitted from the initial-state vertex and absorbed into the final-state vertex is discussed. The helicity sum over those states is evaluated and seen to be covariant. Using this approach, all four electromagnetic form factors of the nucleon, together with the magnetic form factor, G M * , for the γN → Δ transition, can be described using manifestly covariant nucleon and Δ wave functions with zero orbital angular momentum L , but a successful description of G M * near Q 2 = 0 requires the addition of a pion cloud term not included in the class of valence quark models considered here. We also show that the pure S -wave model gives electric, G E * , and Coulomb, G * C , transition form factors that are identically zero, showing that these form factors are sensitive to wave function components with L > 0 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jefferson Lab Hall A Collaboration (M.K. Jones), Phys. Rev. Lett. 84, 1398 (2000).

    Article  ADS  Google Scholar 

  2. Jefferson Lab Hall A Collaboration (O. Gayou), Phys. Rev. Lett. 88, 092301 (2002).

    Article  ADS  Google Scholar 

  3. V. Punjabi, Phys. Rev. C 71, 055202 (2005)

    Article  ADS  Google Scholar 

  4. A. Kvinikhidze, G.A. Miller, Phys. Rev. C 76, 025203 (2007) [arXiv:nucl-th/0701017].

    Article  ADS  Google Scholar 

  5. F. Gross, G. Ramalho, M.T. Peña, Phys. Rev. C 77, 015202 (2008).

    Article  ADS  Google Scholar 

  6. C.E. Hyde-Wright, K. de Jager, Annu. Rev. Nucl. Part. Sci. 54, 217 (2004) [arXiv:nucl-ex/0507001].

    Article  ADS  Google Scholar 

  7. J. Arrington, C.D. Roberts, J.M. Zanotti, J. Phys. G 34, S23 (2007) [arXiv:nucl-th/0611050].

  8. R. Beck, Phys. Rev. C 61, 035204 (2000) [arXiv:nucl-ex/9908017]

    Article  ADS  Google Scholar 

  9. G. Blanpied, Phys. Rev. C 64, 025203 (2001)

    Article  ADS  Google Scholar 

  10. C. Mertz, Phys. Rev. Lett. 86, 2963 (2001) [arXiv:nucl-ex/9902012]

    Article  ADS  Google Scholar 

  11. V.V. Frolov, Phys. Rev. Lett. 82, 45 (1999) [arXiv:hep-ex/9808024]. CLAS Collaboration (K. Joo), Phys. Rev. Lett. 88, 122001 (2002) [arXiv:hep-ex/0110007].

    Article  ADS  Google Scholar 

  12. CLAS Collaboration (M. Ungaro), Phys. Rev. Lett. 97, 112003 (2006) [arXiv:hep-ex/0606042].

    Article  ADS  Google Scholar 

  13. V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007) [arXiv:hep-ph/0609004].

    Article  ADS  Google Scholar 

  14. F. Gross, G. Ramalho, M.T. Pena, Phys. Rev. C 77, 035203 (2008).

    Article  ADS  Google Scholar 

  15. F. Gross, Phys. Rev. 186, 1448 (1969).

    Article  ADS  Google Scholar 

  16. F. Gross, Phys. Rev. C 26, 2226 (1982).

    Article  ADS  Google Scholar 

  17. F. Gross, J.W. Van Orden, K. Holinde, Phys. Rev. C 45, 2094 (1992).

    Article  ADS  Google Scholar 

  18. A. Stadler, F. Gross, Phys. Rev. Lett. 78, 26 (1997).

    Article  ADS  Google Scholar 

  19. A. Stadler, F. Gross, M. Frank, Phys. Rev. C 56, 2396 (1997).

    Article  ADS  Google Scholar 

  20. F. Gross, A. Stadler, M.T. Peña, Phys. Rev. C 69, 034007 (2004).

    Article  ADS  Google Scholar 

  21. J. Adam, F. Gross, C. Savkli, J.W. Van Orden, Phys. Rev. C 56, 641 (1997).

    Article  ADS  Google Scholar 

  22. F. Gross, D.O. Riska, Phys. Rev. C 36, 1928 (1987).

    Article  ADS  Google Scholar 

  23. C. Savkli, F. Gross, Phys. Rev. C 63, 035208 (2001) [arXiv:hep-ph/9911319].

    Article  ADS  Google Scholar 

  24. W. Rarita, J.S. Schwinger, Phys. Rev. 60, 61 (1941).

    Article  ADS  MATH  Google Scholar 

  25. F.J. Milford, Phys. Rev. 98, 1488 (1955).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. M. Benmerrouche, R.M. Davidson, N.C. Mukhopadhyay, Phys. Rev. C 39 (1989) 2339.

    Google Scholar 

  27. H. Haberzettl, arXiv:nucl-th/9812043.

  28. G. Ramalho, M.T. Peña, F. Gross, in preparation.

  29. F. Gross, P. Agbakpe, Phys. Rev. C 73, 015203 (2006).

    Article  ADS  Google Scholar 

  30. A. Kvinikhidze, G.A. Miller, arXiv:nucl-th/0701017.

  31. M. Jacob, G.C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. C.E. Carlson, Phys. Rev. D 34, 2704 (1986)

    Article  ADS  Google Scholar 

  33. H.F. Jones, M.D. Scadron, Ann. Phys. (N.Y.) 81, 1 (1973).

    Article  ADS  Google Scholar 

  34. J.F. Donoghue, E. Golowich, B.R. Holstein, Phys. Rev. D 12, 2875 (1975).

    Article  ADS  Google Scholar 

  35. N. Isgur, G. Karl, R. Koniuk, Phys. Rev. D 25, 2394 (1982).

    Article  ADS  Google Scholar 

  36. M. Warns, W. Pfeil, H. Rollnik, Phys. Rev. D 42, 2215 (1990).

    Article  ADS  Google Scholar 

  37. S. Capstick, B.D. Keister, Phys. Rev. D 51, 3598 (1995) [arXiv:nucl-th/9411016].

    Article  ADS  Google Scholar 

  38. R. Bijker, F. Iachello, A. Leviatan, Ann. Phys. (N.Y.) 236, 69 (1994) [arXiv:nucl-th/9402012].

    Article  ADS  Google Scholar 

  39. B. Julia-Diaz, D.O. Riska, F. Coester, Phys. Rev. C 69, 035212 (2004)

    Article  ADS  Google Scholar 

  40. B. Julia-Diaz, D.O. Riska, Nucl. Phys. A 757, 441 (2005) [arXiv:nucl-th/0411012].

    Article  ADS  Google Scholar 

  41. B. Julia-Diaz, T.S. Lee, T. Sato, L.C. Smith, Phys. Rev. C 75, 015205 (2007).

    Article  ADS  Google Scholar 

  42. V.M. Braun, A. Lenz, G. Peters, A.V. Radyushkin, Phys. Rev. D 73, 034020 (2006) [arXiv:hep-ph/0510237].

    Article  ADS  Google Scholar 

  43. J. Rohrwild, Phys. Rev. D 75, 074025 (2007) [arXiv:hep-ph/0701085].

    Article  ADS  Google Scholar 

  44. P. Stoler, Phys. Rev. D 65, 053013 (2002) [arXiv:hep-ph/0108257]

    Article  ADS  Google Scholar 

  45. M. Guidal, M.V. Polyakov, A.V. Radyushkin, M. Vanderhaeghen, Phys. Rev. D 72, 054013 (2005) [arXiv:hep-ph/0410251].

    Article  ADS  Google Scholar 

  46. V. Pascalutsa, C.E. Carlson, M. Vanderhaeghen, Phys. Rev. Lett. 96, 012301 (2006) [arXiv:hep-ph/0509055].

    Article  ADS  Google Scholar 

  47. T. Sato, T.S.H. Lee, Phys. Rev. C 54, 2660 (1996) [arXiv:nucl-th/9606009]

    Article  ADS  Google Scholar 

  48. S.S. Kamalov, S.N. Yang, D. Drechsel, O. Hanstein, L. Tiator, Phys. Rev. C 64, 032201 (2001) [arXiv:nucl-th/0006068]

    Article  ADS  Google Scholar 

  49. G.L. Caia, V. Pascalutsa, J.A. Tjon, L.E. Wright, Phys. Rev. C 70, 032201 (2004) [arXiv:nucl-th/0407069]

    Article  ADS  Google Scholar 

  50. V.D. Burkert, T.S.H. Lee, Int. J. Mod. Phys. E 13, 1035 (2004).

    Article  ADS  Google Scholar 

  51. D. Drechsel, L. Tiator, AIP Conf. Proc. 904, 129 (2007) [arXiv:nucl-th/0610112].

    Article  ADS  Google Scholar 

  52. V.D. Burkert, Prog. Part. Nucl. Phys. 55 (2005) 108.

    Google Scholar 

  53. B. Julia-Diaz, private comunication (2007).

  54. W. Bartel, Phys. Lett. B 28, 148 (1968).

    Article  ADS  Google Scholar 

  55. S. Stein, Phys. Rev. D 12, 1884 (1975).

    Article  ADS  Google Scholar 

  56. V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. Lett. 95, 232001 (2005) [arXiv:hep-ph/0508060].

    Article  ADS  Google Scholar 

  57. V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D 73, 034003 (2006) [arXiv:hep-ph/0512244].

    Article  ADS  Google Scholar 

  58. A. Faessler, T. Gutsche, B.R. Holstein, V.E. Lyubovitskij, D. Nicmorus, K. Pumsa-ard, arXiv:hep-ph/0612246.

  59. C. Fernandez-Ramirez, E.M. de Guerra, J.M. Udias, Eur. Phys. J. A 31, 572 (2007) [arXiv:nucl-th/0611062].

    Article  ADS  Google Scholar 

  60. T.A. Gail, T.R. Hemmert, Eur. Phys. J. A 28, 91 (2006) [arXiv:nucl-th/0512082].

    Article  ADS  Google Scholar 

  61. C. Alexandrou, Ph. de Forcrand, H. Neff, J.W. Negele, W. Schroers, A. Tsapalis, Phys. Rev. Lett. 94, 021601 (2005) [arXiv:hep-lat/0409122].

    Article  ADS  Google Scholar 

  62. C. Alexandrou, G. Koutsou, H. Neff, J.W. Negele, W. Schroers, A. Tsapalis, Phys. Rev. D 77, 085012 (2008) [arXiv:0710.4621 [hep-lat]].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ramalho.

Additional information

V. Vento

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramalho, G., Peña, M.T. & Gross, F. A covariant model for the nucleon and the Δ . Eur. Phys. J. A 36, 329–348 (2008). https://doi.org/10.1140/epja/i2008-10599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10599-0

PACS.

Navigation