Skip to main content
Log in

\(\mathbf {\gamma _{v} NN^{*}}\) Electrocouplings in Dyson–Schwinger Equations

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A symmetry preserving framework for the study of continuum Quantum Chromodynamics (QCD) is obtained from a truncated solution of the QCD equations of motion or QCD’s Dyson–Schwinger equations (DSEs). A nonperturbative solution of the DSEs enables the study of, e.g., hadrons as composites of dressed-quarks and dressed-gluons, the phenomena of confinement and dynamical chiral symmetry breaking (DCSB), and therefrom an articulation of any connection between them. It is within this context that we present a unified study of Nucleon, Delta and Roper elastic and transition electromagnetic form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector \(\otimes \) vector contact-interaction. The comparison emphasises that experiment is sensitive to the momentum dependence of the running coupling and masses in QCD and highlights that the key to describing hadron properties is a veracious expression of DCSB in the bound-state problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aznauryan, I.G., et al.: Studies of nucleon resonance structure in exclusive meson electroproduction. Int. J. Mod. Phys. E 22, 1330015 (2013)

    Article  ADS  Google Scholar 

  2. Tiator, L., et al.: Electroproduction of nucleon resonances. Eur. Phys. J. A 19, 55 (2004)

    Article  ADS  Google Scholar 

  3. Kamano, H., et al.: Nucleon resonances within a dynamical coupled-channels model of \(\pi N\) and \(\gamma N\) reactions. Phys. Rev. C 88, 035209 (2013)

    Article  ADS  Google Scholar 

  4. Cloët, I.C., et al.: Revealing dressed-quarks via the proton’s charge distribution. Phys. Rev. Lett. 111, 101803 (2013)

    Article  ADS  Google Scholar 

  5. Chang, L., et al.: Pion electromagnetic form factor at spacelike momenta. Phys. Rev. Lett. 111, 141802 (2013)

    Article  ADS  Google Scholar 

  6. Segovia, J., et al.: Insights into the \(\gamma ^{\ast }N\rightarrow \varDelta \) transition. Phys. Rev. C 88, 032201 (2013)

    Article  ADS  Google Scholar 

  7. Segovia, J., et al.: Elastic and transition form factors of the \(\varDelta (1232)\). Few Body Syst. 55, 1–33 (2013)

    Article  ADS  Google Scholar 

  8. Segovia, J., et al.: Nucleon and \(\varDelta \) elastic and transition form factors. Few Body Syst. 55, 1185–1222 (2014)

    Article  ADS  Google Scholar 

  9. Segovia, J., et al.: Understanding the nucleon as a Borromean bound-state. Phys. Lett. B 750, 100–106 (2015)

    Article  ADS  Google Scholar 

  10. Segovia, J., et al.: Completing the picture of the Roper resonance. Phys. Rev. Lett. 115, 171801 (2015)

    Article  ADS  Google Scholar 

  11. Chang, L., et al.: Selected highlights from the study of mesons. Chin. J. Phys. 49, 955–1004 (2011)

    ADS  Google Scholar 

  12. Bashir, A., et al.: Collective perspective on advances in Dyson–Schwinger equation QCD. Commun. Theor. Phys. 58, 79–134 (2012)

    Article  MATH  Google Scholar 

  13. Cloët, I., et al.: Explanation and prediction of observables using continuum strong QCD. Prog. Part. Nucl. Phys. 77, 1–69 (2014)

    Article  ADS  Google Scholar 

  14. Olive, K.A., Particle Data Group, et al.: The review of particle physics. Chin. Phys. C 38, 090001 (2014)

  15. Mokeev, V.I., et al.: Experimental study of the \(P_{11}(1440)\) and \(D_{13}(1520)\) resonances from CLAS data on \(ep\rightarrow e^{\prime }\pi ^{+}\pi ^{-}p^{\prime }\). Phys. Rev. C 86, 035203 (2012)

    Article  ADS  Google Scholar 

  16. Mokeev, V.I., et al.: Studies of \(N^{\ast }\) structure from the CLAS meson electroproduction data. Int. J. Mod. Phys. Conf. Ser. 26, 1460080 (2013)

    Article  Google Scholar 

  17. Punjabi, V., et al.: Proton elastic form-factor ratios to \(Q^2 = 3.5\,{\rm GeV}^2\) by polarization transfer. Phys. Rev. C 71, 055202 (2005)

    Article  ADS  Google Scholar 

  18. Puckett, A.J.R., et al.: Recoil polarization measurements of the proton electromagnetic form factor ratio to \(Q^2 = 8.5\,{\rm GeV}^2\). Phys. Rev. Lett. 104, 242301 (2010)

    Article  ADS  Google Scholar 

  19. Puckett, A.J.R., et al.: Final analysis of proton form factor ratio data at \(Q^2 = 4.0\), \(4.8\) and \(5.6\,{{\rm GeV}}^2\). Phys. Rev. C 85, 045203 (2012)

    Article  ADS  Google Scholar 

  20. Cates, G.D., et al.: Flavor decomposition of the elastic nucleon electromagnetic form factors. Phys. Rev. Lett. 106, 252003 (2011)

    Article  ADS  Google Scholar 

  21. Jones, H.F., et al.: Multipole \(\gamma N\varDelta \) form-factors and resonant photoproduction and electroproduction. Ann. Phys. 81, 1–14 (1973)

    Article  ADS  Google Scholar 

  22. Eichmann, G., et al.: Nucleon to Delta electromagnetic transition in the Dyson–Schwinger approach. Phys. Rev. D 85, 093004 (2012)

    Article  ADS  Google Scholar 

  23. Beg, M.A.B., et al.: SU(6) and electromagnetic interactions. Phys. Rev. Lett. 13, 514–517 (1964)

    Article  ADS  Google Scholar 

  24. Buchmann, A.J.: Electromagnetic \(N\rightarrow \varDelta \) transition and neutron form-factors. Phys. Rev. Lett. 93, 212301 (2004)

    Article  ADS  Google Scholar 

  25. Carlson, Carl E.: Electromagnetic \(N-\varDelta \) transition at high \(Q^{2}\). Phys. Rev. D 34, 2704 (1986)

    Article  ADS  Google Scholar 

  26. Aznauryan, I.: Results from the \(N^{\ast }\) program at JLab. J. Phys. Conf. Ser. 299, 012008 (2011)

    Article  ADS  Google Scholar 

  27. Ash, W., et al.: Measurement of the \(\gamma NN^{\ast }\) form factor. Phys. Lett. B 24, 165–168 (1967)

    Article  ADS  Google Scholar 

  28. Julia-Diaz, B., et al.: Extraction and interpretation of \(\gamma N\rightarrow \varDelta \) form factors within a dynamical model. Phys. Rev. C 75, 015205 (2007)

    Article  ADS  Google Scholar 

  29. Sanchis-Alepuz, H., et al.: Pion cloud effects on baryon masses. Phys. Lett. B 733, 151–157 (2014)

    Article  ADS  Google Scholar 

  30. Aznauryan, I.G., et al.: Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction. Phys. Rev. C 80, 055203 (2009)

    Article  ADS  Google Scholar 

  31. Aznauryan, I.G., et al.: Electroexcitation of nucleon resonances. Prog. Part. Nucl. Phys. 67, 1–54 (2012)

    Article  ADS  Google Scholar 

  32. Alexandrou, C., et al.: Evidence for diquarks in lattice QCD. Phys. Rev. Lett. 97, 222002 (2006)

    Article  ADS  Google Scholar 

  33. Eichmann, G., et al.: Nucleon mass from a covariant three-quark Faddeev equation. Phys. Rev. Lett. 104, 201601 (2010)

    Article  ADS  Google Scholar 

  34. Gayou, O., et al.: Measurements of the elastic electromagnetic form-factor ratio \(mu_p G_{Ep}/G_{Mp}\) via polarization transfer. Phys. Rev. C 64, 038202 (2001)

    Article  ADS  Google Scholar 

  35. Dugger, M., et al.: \(\pi ^+\) photoproduction on the proton for photon energies from \(0.725\) to \(2.875\,{\rm GeV}\). Phys. Rev. C 79, 065206 (2009)

    Article  ADS  Google Scholar 

  36. Suzuki, N., et al.: Disentangling the dynamical origin of \(P_{11}\) nucleon resonances. Phys. Rev. Lett. 104, 042302 (2010)

    Article  ADS  Google Scholar 

  37. Eichmann, G., et al.: Perspective on rainbow-ladder truncation. Phys. Rev. C 77, 042202 (2008)

    Article  ADS  Google Scholar 

  38. Eichmann, G., et al.: Toward unifying the description of meson and baryon properties. Phys. Rev. C 79, 012202 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Segovia.

Additional information

This article belongs to the special issue “Nucleon Resonances”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segovia, J. \(\mathbf {\gamma _{v} NN^{*}}\) Electrocouplings in Dyson–Schwinger Equations. Few-Body Syst 57, 993–1000 (2016). https://doi.org/10.1007/s00601-016-1140-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-016-1140-y

Navigation