Skip to main content
Log in

Electromagnetic Transition Form Factor of the Nucleon \(\Delta \) (1232) in The Nonrelativistic Constituent Quark Model

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The study of nucleon electromagnetic form factors has long been identified as a singular source of information for conception strong interactions in the extent of quark confinement. We have performed a calculation of the helicity amplitudes and the electromagnetic transition form factors of the electromagnetic excitation in \(\Delta \)(1232) resonances. In this paper, the electromagnetic interaction for N \((938)\rightarrow \Delta (1232)\) transitions at four-momenta transfer \(0 \le \hbox {Q2}(\hbox {GeV}^\mathrm{{2}}) \le 8\) in the nonrelativistic constituent quark model calculated. In comparison with present experimental, relativistic and non-relativistic data, our results are in good agreement with the experimental and the other theoretical results, in particular of the medium-high \(\hbox {Q}^{2}\) behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I.G. Aznauryan et al., Phys. Rev. C 78, 045209 (2008)

    ADS  Google Scholar 

  2. L. Zhenping, D. Yubing, M. Weihsing, J. Phys. G 23, 151 (1997)

    ADS  Google Scholar 

  3. I.G. Aznauryan, V.D. Burkert, JLAB-PHY-11-1409

  4. Z.P. Li, V. Burkert, Zh Li, Phys. Rev. D 46, 70 (1992)

    ADS  Google Scholar 

  5. F.E. Close, Z. Li, Phys. Rev. D 42, 2194 (1990)

    ADS  Google Scholar 

  6. F. Halzen, A.D. Martin, Quarks and Leptons (Wiley, New York, 1984)

    Google Scholar 

  7. I.G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013)

    ADS  Google Scholar 

  8. T. Kubota, K. Ohta, Phys. Lett. B 65, 374 (1976)

    ADS  Google Scholar 

  9. S. Capstick, B.D. Keister, Phys. Rev. D 51, 3598 (1995)

    ADS  Google Scholar 

  10. A.J. Buchmann, E. Hernandez, U. Meyer, A. Faessler, Phys. Rev. C 58, 2478 (1998)

    ADS  Google Scholar 

  11. M.M. Giannini, EPJ Web of Conferences, vol. 73, p. 04017 (2014)

  12. H.H. Matevosyan, G.A. Miller, A.W. Thomas, Phys. Rev. C 71, 055204 (2005)

    ADS  Google Scholar 

  13. R.G. Edwards, Nucl. Phys. Proc. Suppl. 140, 290 (2005)

    Google Scholar 

  14. M. Gockeler et al., Phys. Rev. D 71, 034508 (2005)

    ADS  Google Scholar 

  15. V.D. Burkert, T.S.H. Lee, Int. J. Mod. Phys. E 13, 108 (2004)

    Google Scholar 

  16. M. De Sanctis, E. Santopinto, M.M. Giannini, Eur. Phys. J. A 1, 187–192 (1998)

    ADS  Google Scholar 

  17. R.M. Barnett et al., Phys. Rev. D 54, 1 (1996)

    ADS  MathSciNet  Google Scholar 

  18. F.E. Close, Introduction to Quarks and Partons (Academic, New York, 1978)

    Google Scholar 

  19. L.A. Copley, G. Karl, E. Obryk, Nucl. Phys. B 13, 303 (1969)

    ADS  Google Scholar 

  20. R.P. Feynman, M. Kislinger, F. Ravndal, Phys. Rev. D 3, 2706 (1971)

    ADS  Google Scholar 

  21. R. Bijker, F. Iachello, A. Leviatan, Ann. Phys. (N.Y.) 236, 69 (1994)

    ADS  Google Scholar 

  22. M. Aiello et al., Phys. Lett. B 387, 215 (1996)

    ADS  Google Scholar 

  23. Z. Dziembowski, M. Fabre de la Ripelle, G.A. Miller, Phys. Rev. C 53, R2038 (1996)

    ADS  Google Scholar 

  24. N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978)

    ADS  Google Scholar 

  25. N. Isgur, G. Karl, Phys. Rev. D 19, 2653 (1979)

    ADS  Google Scholar 

  26. N. Isgur, G. Karl, Phys. Rev. D 20, 1191 (1979)

    ADS  Google Scholar 

  27. M.M. Giannini, Rep. Prog. Phys. 54, 453 (1991)

    ADS  Google Scholar 

  28. L.A. Copley, G. Karl, E. Obryk, Phys. Lett. 29, 117 (1969)

    Google Scholar 

  29. R. Koniuk, N. Isgur, Phys. Rev. D 21, 1868 (1980)

    ADS  Google Scholar 

  30. S. Parsaei, A.A. Rajabi, Eur. Phys. J. Plus 132, 413 (2017)

    Google Scholar 

  31. M. De Sanctis, M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 19, 81–85 (2004)

    Google Scholar 

  32. S. Parsaei, A.A. Rajabi, Eur. Phys. J. Plus 133(7), 265 (2018)

    Google Scholar 

  33. S. Parsaei, A.A. Rajabi, Commun. Theor. Phys. 69, 43 (2018)

    ADS  Google Scholar 

  34. Y.B. Dong, M.M. Giannini, E. Santopinto, A. Vassallo, Few Body Syst. 55, 873 (2014)

    ADS  Google Scholar 

  35. E. Fermi, H. Anderson, A. Lundby, D. Nagle, G. Yodh, Phys. Rev. 85, 935 (1952)

    ADS  Google Scholar 

  36. H. Anderson, E. Fermi, E. Long, D. Nagle, Phys. Rev. 85, 936 (1952)

    ADS  Google Scholar 

  37. D.E. Nagle, The Delta: The First Pion Nucleon Resonance, Its Discovery and Applications. Los Alamos National Laboratory report no. LALP-84-27 (1984)

  38. E. Santopinto, M.M. Giannini, Phys. Rev. C 86, 065202 (2012) and references quoted therein

  39. P. Bartsch et al., Phys. Rev. Lett. 88, 142001 (2002)

    ADS  Google Scholar 

  40. A.J. Buchmann, E. Hernandez, A. Faessler, Phys. Rev. C 55, 448 (1997)

    ADS  Google Scholar 

  41. K. Azizi, Eur. Phys. J. C 61, 311–319 (2009)

    ADS  Google Scholar 

  42. V.M. Braun, A. Lenz, G. Peters, A.V. Radyushkin, Phys. Rev. D 73, 034020 (2006)

    ADS  Google Scholar 

  43. J.J. Kelly et al., Phys. Rev. C 75, 025201 (2007)

    ADS  Google Scholar 

  44. S.J. Brodsky, S.D. Drell, Phys. Rev. D 22, 2236 (1980)

    ADS  Google Scholar 

  45. S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 45, S241 (2000)

    ADS  Google Scholar 

  46. D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007)

    ADS  Google Scholar 

  47. K. Joo et al. (JLab-CLAS), Phys. Rev. Lett. 88, 122001-1 (2002)

  48. G. Laveissi\_ere et al. (JLab-Hall A), Phys. Rev. C 69, 045202 (2004)

  49. T.M. Aliev, K. Azizi, A. Ozpineci, M. Savci, Phys. Rev. D 77, 114014 (2008)

    ADS  Google Scholar 

  50. T.M. Aliev, K. Azizi, A. Ozpineci, Nucl. Phys. A 799, 105–126 (2008)

    ADS  Google Scholar 

  51. F.E. Close, A. Donnachie, G. Shaw, Electromagnetic Interactions and Hadronic Structure (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  52. M. Ronniger, BCh. Metsch, Eur. Phys. J. A 49, 8 (2013)

    ADS  Google Scholar 

  53. T. Bartel et al., Nucl. Phys. B 58, 469 (1973)

    ADS  Google Scholar 

  54. S. Stein et al., Phys. Rev. D 12, 1884 (1975)

    ADS  Google Scholar 

  55. D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007)

    ADS  Google Scholar 

  56. L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Chin. Phys. C 33, 1069 (2009)

    ADS  Google Scholar 

  57. L. Tiator, D. Drechsel, S. Kamalov, M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 19(s01), 55 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Parsaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsaei, S. Electromagnetic Transition Form Factor of the Nucleon \(\Delta \) (1232) in The Nonrelativistic Constituent Quark Model. Few-Body Syst 60, 60 (2019). https://doi.org/10.1007/s00601-019-1527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1527-7

Navigation