Boosted objects: a probe of beyond the standard model physics

  • A. Abdesselam
  • A. Belyaev
  • E. Bergeaas Kuutmann
  • U. Bitenc
  • G. Brooijmans
  • J. Butterworth
  • P. Bruckman de Renstrom
  • D. Buarque Franzosi
  • R. Buckingham
  • B. Chapleau
  • M. Dasgupta
  • A. Davison
  • J. Dolen
  • S. Ellis
  • F. Fassi
  • J. Ferrando
  • M. T. Frandsen
  • J. Frost
  • T. Gadfort
  • N. Glover
  • A. Haas
  • E. Halkiadakis
  • K. Hamilton
  • C. Hays
  • C. Hill
  • J. Jackson
  • C. Issever
  • M. Karagoz
  • A. Katz
  • L. Kreczko
  • D. Krohn
  • A. Lewis
  • S. Livermore
  • P. Loch
  • P. Maksimovic
  • J. March-Russell
  • A. Martin
  • N. McCubbin
  • D. Newbold
  • J. Ott
  • G. Perez
  • A. Policchio
  • S. Rappoccio
  • A. R. Raklev
  • P. Richardson
  • G. P. Salam
  • F. Sannino
  • J. Santiago
  • A. Schwartzman
  • C. Shepherd-Themistocleous
  • P. Sinervo
  • J. Sjoelin
  • M. Son
  • M. Spannowsky
  • E. Strauss
  • M. Takeuchi
  • J. Tseng
  • B. Tweedie
  • C. Vermilion
  • J. Voigt
  • M. Vos
  • J. Wacker
  • J. Wagner-Kuhr
  • M. G. Wilson
Open Access
Special Article - Tools for Experiment and Theory

Abstract

We present the report of the hadronic working group of the BOOST2010 workshop held at the University of Oxford in June 2010. The first part contains a review of the potential of hadronic decays of highly boosted particles as an aid for discovery at the LHC and a discussion of the status of tools developed to meet the challenge of reconstructing and isolating these topologies. In the second part, we present new results comparing the performance of jet grooming techniques and top tagging algorithms on a common set of benchmark channels. We also study the sensitivity of jet substructure observables to the uncertainties in Monte Carlo predictions.

References

  1. 1.
    G. Aad et al. (ATLAS Collaboration), The ATLAS experiment at the CERN large hadron collider. J. Instrum. 3, S08003 (2008) CrossRefGoogle Scholar
  2. 2.
    R. Adolphi et al. (CMS Collaboration), The CMS experiment at the CERN LHC. J. Instrum. 3, S08004 (2008) CrossRefGoogle Scholar
  3. 3.
    Boost2009, giving physics a new boost. SLAC National Accelerator Laboratory, 9–10 July, 2009. http://www-conf.slac.stanford.edu/Boost2009/
  4. 4.
    Joint theoretical-experimental workshop on jets and jet substructure at the LHC. University of Washington, 11–15 January, 2010. http://silicon.phys.washington.edu/JetsWorkshop
  5. 5.
    Boost2010. University of Oxford, 22–25 June, 2010. http://www.physics.ox.ac.uk/boost2010/
  6. 6.
    (ATLAS Collaboration), First measurements of jet shapes in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector. ATLAS Commun. ATL-COM-PHYS-2010-561 (2010) Google Scholar
  7. 7.
    R. Adolphi et al. (CMS Collaboration), Jet transverse structure and momentum distribution in pp collisions at 7 TeV. CMS Phys. Anal. Summary CMS-PAS-QCD-10-014 (2010) Google Scholar
  8. 8.
    J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Jet substructure as a new Higgs search channel at the LHC. Phys. Rev. Lett. 100, 242001 (2008). arXiv:0802.2470 ADSCrossRefGoogle Scholar
  9. 9.
    (ATLAS Collaboration), Atlas sensitivity to the standard model Higgs in the HW and HZ channels at high transverse momenta. ATL-PHYS-PUB-2009-088 (2009) Google Scholar
  10. 10.
    J.M. Butterworth, J.R. Ellis, A.R. Raklev, G.P. Salam, Discovering baryon-number violating neutralino decays at the LHC. Phys. Rev. Lett. 103, 241803 (2009). arXiv:0906.0728 ADSCrossRefGoogle Scholar
  11. 11.
    T. Plehn, G.P. Salam, M. Spannowsky, Fat jets for a light Higgs. Phys. Rev. Lett. 104, 111801 (2010). arXiv:0910.5472 ADSCrossRefGoogle Scholar
  12. 12.
    D.E. Soper, M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC. J. High Energy Phys. 08, 029 (2010). arXiv:1005.0417 ADSCrossRefGoogle Scholar
  13. 13.
    G. Brooijmans et al., New physics at the LHC. A Les Houches report: Physics at TeV colliders 2009—new physics working group. arXiv:1005.1229
  14. 14.
    G. Piacquadio, Identification of b-jets and investigation of the discovery potential of a Higgs boson in the \(WH \rightarrow l \nu b \bar{b}\) channel with the ATLAS experiment. Albert Ludwig University of Freiburg. CERN-THESIS-2010-027 Google Scholar
  15. 15.
    Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, Better jet clustering algorithms. J. High Energy Phys. 08, 001 (1997). arXiv:hep-ph/9707323 ADSCrossRefGoogle Scholar
  16. 16.
    M. Wobisch, T. Wengler, Hadronization corrections to jet cross sections in deep-inelastic scattering. arXiv:hep-ph/9907280
  17. 17.
    I. Hinchliffe et al. (ATLAS Collaboration), ATLAS detector and physics performance. Technical design report, Vol. 2. CERN-LHCC-99-15 Google Scholar
  18. 18.
    Th. Muller, V. Drollinger, D. Denegri, CMS Note 2001/054 Google Scholar
  19. 19.
    S. Abdullin et al. (CMS Collaboration). CMS Note 2003/33 Google Scholar
  20. 20.
    J. Cammin, M. Schumacher, The atlas discovery potential for the channel tth, h to bb. ATL-PHYS-2003-024 (2003) Google Scholar
  21. 21.
    D. Benedetti et al., Observability of Higgs produced with top quarks and decaying to bottom quarks. J. Phys. G 34, N221–N250 (2007) MathSciNetCrossRefGoogle Scholar
  22. 22.
    C.-R. Chen, M.M. Nojiri, W. Sreethawong, Search for the elusive Higgs boson using jet structure at LHC. J. High Energy Phys. 11, 012 (2010). arXiv:1006.1151 ADSCrossRefGoogle Scholar
  23. 23.
    A. Falkowski, D. Krohn, L.-T. Wang, J. Shelton, A. Thalapillil, Unburied Higgs. arXiv:1006.1650
  24. 24.
    G.D. Kribs, A. Martin, T.S. Roy, M. Spannowsky, Discovering the Higgs boson in new physics events using jet substructure. Phys. Rev. D 81, 111501 (2010). arXiv:0912.4731 ADSCrossRefGoogle Scholar
  25. 25.
    J.M. Butterworth, J.R. Ellis, A.R. Raklev, Reconstructing sparticle mass spectra using hadronic decays. J. High Energy Phys. 05, 033 (2007). arXiv:hep-ph/0702150 ADSCrossRefGoogle Scholar
  26. 26.
    G.D. Kribs, A. Martin, T.S. Roy, M. Spannowsky, Discovering Higgs bosons of the MSSM using jet substructure. arXiv:1006.1656
  27. 27.
    G. Brooijmans, High pt hadronic top quark identification part 1: Jet mass and Ysplitter. ATL-PHYS-CONF-2008-008 Google Scholar
  28. 28.
    J.M. Butterworth, B.E. Cox, J.R. Forshaw, WW scattering at the CERN LHC. Phys. Rev. D 65, 096014 (2002). arXiv:hep-ph/0201098 ADSCrossRefGoogle Scholar
  29. 29.
    J.M. Butterworth, A. Davison, E. Ozcan, P. Sherwood, Ysplitter: an Athena tool for studying jet substructure. ATL-PHYS-INT-2007-015 (ATLAS Collaboration only) Google Scholar
  30. 30.
    (ATLAS Collaboration), Reconstruction of high mass tt resonances in the lepton+jets channel. ATL-PHYS-PUB-2009-081 Google Scholar
  31. 31.
    D.E. Kaplan, K. Rehermann, M.D. Schwartz, B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks. Phys. Rev. Lett. 101, 142001 (2008). arXiv:0806.0848 ADSCrossRefGoogle Scholar
  32. 32.
    B. Bhattacherjee, M. Guchait, S. Raychaudhuri, K. Sridhar, Boosted top quark signals for heavy vector boson excitations in a universal extra dimension model. Phys. Rev. D 82, 055006 (2010). arXiv:1006.3213 ADSCrossRefGoogle Scholar
  33. 33.
    R. Adolphi et al. (CMS Collaboration), A Cambridge-Aachen (C-A) based jet algorithm for boosted top jet tagging. CMS Phys. Anal. Summ. CMS-PAS-JME-09-001 (2009) Google Scholar
  34. 34.
    R. Adolphi et al. (CMS Collaboration), Search for high-mass resonances decaying into top-antitop pairs in the all-hadronic mode. CMS Phys. Anal. Summ. CMS-PAS-EXO-09-002 (2009) Google Scholar
  35. 35.
    T. Plehn, M. Spannowsky, M. Takeuchi, D. Zerwas, Stop reconstruction with tagged tops. J. High Energy Phys. 10, 078 (2010). arXiv:1006.2833 ADSCrossRefGoogle Scholar
  36. 36.
    M. Vos, High pt hadronic top quark identification part 2: the lifetime signature. ATL-PHYS-CONF-2008-016 Google Scholar
  37. 37.
    J. Thaler, L.-T. Wang, Strategies to identify boosted tops. J. High Energy Phys. 07, 092 (2008). arXiv:0806.0023 ADSCrossRefGoogle Scholar
  38. 38.
    K. Rehermann, B. Tweedie, Efficient identification of boosted semileptonic top quarks at the LHC. arXiv:1007.2221
  39. 39.
    (ATLAS Collaboration), Prospects for top anti-top resonance searches using early ATLAS data. Tech. rep. ATL-PHYS-PUB-2010-008, CERN, Geneva, Jul, 2010 Google Scholar
  40. 40.
    R. Adolphi et al. (CMS Collaboration), Search for heavy narrow \(t \bar{t} \) resonances in the muon-plus-jets final state with the CMS detector. CMS Phys. Anal. Summ. CMS-PAS-EXO-09-008 (2009) Google Scholar
  41. 41.
    R. Adolphi et al. (CMS Collaboration), Study of the top-pair invariant mass distribution in the semileptonic muon channel at \(\sqrt{s} = 10\) TeV. CMS Phys. Anal. Summ. CMS-PAS-TOP-09-009 (2009) Google Scholar
  42. 42.
    G.P. Salam, G. Soyez, A practical seedless infrared-safe cone jet algorithm. J. High Energy Phys. 05, 086 (2007). arXiv:0704.0292 ADSCrossRefGoogle Scholar
  43. 43.
    T. Han, D. Krohn, L.-T. Wang, W. Zhu, New physics signals in longitudinal gauge boson scattering at the LHC. J. High Energy Phys. 03, 082 (2010). arXiv:0911.3656 ADSCrossRefGoogle Scholar
  44. 44.
    G. Aad et al. (ATLAS Collaboration), Expected performance of the ATLAS experiment: detector, trigger and physics, Chap. 14, pp. 1769–1802. No. CERN-OPEN-2008-020 CERN, Geneva, 2009. arXiv:0901.0512
  45. 45.
    S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions. Nucl. Phys. B 406, 187–224 (1993) ADSCrossRefGoogle Scholar
  46. 46.
    S.D. Ellis, D.E. Soper, Successive combination jet algorithm for hadron collisions. Phys. Rev. D 48, 3160–3166 (1993). arXiv:hep-ph/9305266 ADSCrossRefGoogle Scholar
  47. 47.
    C. Hackstein, M. Spannowsky, Boosting Higgs discovery—the forgotten channel. arXiv:1008.2202
  48. 48.
    C. Englert, C. Hackstein, M. Spannowsky, Measuring spin and CP from semi-hadronic ZZ decays using jet substructure. arXiv:1010.0676
  49. 49.
    A. Katz, M. Son, B. Tweedie, Jet substructure and the search for neutral spin-one resonances in electroweak boson channels. arXiv:1010.5253
  50. 50.
    (ATLAS Collaboration), A method for discovering heavy particles decaying into single boosted jets with substructure using the k⊥ algorithm. Tech. rep. ATL-PHYS-PUB-2009-076. ATL-COM-PHYS-2009-262, CERN, Geneva, May, 2009 Google Scholar
  51. 51.
    M. Cacciari, G.P. Salam, Dispelling the N 3 myth for the k t jet-finder. Phys. Lett. B 641, 57–61 (2006). arXiv:hep-ph/0512210 ADSCrossRefGoogle Scholar
  52. 52.
    M. Cacciari, G.P. Salam, G. Soyez, http://www.fastjet.fr
  53. 53.
    S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch, M. Tonnesmann, Jets in hadron-hadron collisions. Prog. Part. Nucl. Phys. 60, 484–551 (2008). arXiv:0712.2447 ADSCrossRefGoogle Scholar
  54. 54.
    SpartyJet Documentation. http://projects.hepforge.org/spartyjet
  55. 55.
    M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: a comparative study. Z. Phys. C 62, 127–138 (1994) ADSGoogle Scholar
  56. 56.
    G. Aad et al. (ATLAS Collaboration), Expected performance of the ATLAS experiment—detector, trigger and physics. arXiv:0901.0512
  57. 57.
    M. Dasgupta, L. Magnea, G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders. J. High Energy Phys. 02, 055 (2008). arXiv:0712.3014 ADSCrossRefGoogle Scholar
  58. 58.
    M. Cacciari, J. Rojo, G.P. Salam, G. Soyez, Quantifying the performance of jet definitions for kinematic reconstruction at the LHC. J. High Energy Phys. 12, 032 (2008). arXiv:0810.1304 ADSCrossRefGoogle Scholar
  59. 59.
    M. Rubin, Non-global logarithms in filtered jet algorithms. J. High Energy Phys. 05, 005 (2010). arXiv:1002.4557 ADSCrossRefGoogle Scholar
  60. 60.
  61. 61.
    S. Rappoccio, A new top jet tagging algorithm for highly boosted top jets. CMS CR-2009/255 Google Scholar
  62. 62.
  63. 63.
    G.P. Salam, Towards jetography. Eur. Phys. J. C 67, 637–686 (2010). arXiv:0906.1833 ADSCrossRefGoogle Scholar
  64. 64.
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, Techniques for improved heavy particle searches with jet substructure. Phys. Rev. D 80, 051501 (2009). arXiv:0903.5081 ADSCrossRefGoogle Scholar
  65. 65.
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches. Phys. Rev. D 81, 094023 (2010). arXiv:0912.0033 ADSCrossRefGoogle Scholar
  66. 66.
    D. Krohn, J. Thaler, L.-T. Wang, Jet trimming. J. High Energy Phys. 02, 084 (2010). arXiv:0912.1342 ADSCrossRefGoogle Scholar
  67. 67.
    L.G. Almeida et al., Substructure of high-p T jets at the LHC. Phys. Rev. D 79, 074017 (2009). arXiv:0807.0234 MathSciNetADSCrossRefGoogle Scholar
  68. 68.
    L.G. Almeida, S.J. Lee, G. Perez, G. Sterman, I. Sung, Template overlap method for massive jets. Phys. Rev. D 82, 054034 (2010). arXiv:1006.2035 ADSCrossRefGoogle Scholar
  69. 69.
    J. Gallicchio, M.D. Schwartz, Seeing in color: jet superstructure. Phys. Rev. Lett. 105, 022001 (2010). arXiv:1001.5027 ADSCrossRefGoogle Scholar
  70. 70.
    S. Chekanov et al. (ZEUS Collaboration), Measurement of subjet multiplicities in neutral current deep inelastic scattering at HERA and determination of α s. Phys. Lett. B 558, 41 (2003) ADSCrossRefGoogle Scholar
  71. 71.
    S. Chekanov et al. (ZEUS Collaboration), Substructure dependence of jet cross sections at HERA and determination of α s. Nucl. Phys. B 700, 3 (2004) ADSGoogle Scholar
  72. 72.
    S. Chekanov et al. (ZEUS Collaboration), Subjet distributions in deep inelastic scattering at HERA. Eur. J. Phys. 63, 527 (2009) CrossRefGoogle Scholar
  73. 73.
    V. Abazov et al. (D0 Collaboration), Subjet multiplicity of gluon and quark jets reconstructed with the k T algorithm in \(p\bar{p}\) collisions. Phys. Rev. D 65, 052008 (2002) ADSCrossRefGoogle Scholar
  74. 74.
    D. Acosta et al. (CDF Collaboration), Study of jet shapes in inclusive jet production in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV. Phys. Rev. D 71, 112002 (2005) ADSGoogle Scholar
  75. 75.
    T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 05, 026 (2006). arXiv:hep-ph/0603175. For older versions, see http://home.thep.lu.se/~torbjorn/Pythia.html ADSCrossRefGoogle Scholar
  76. 76.
    G. Corcella et al., HERWIG 6.5 release note. arXiv:hep-ph/0210213
  77. 77.
    T. Aaltonen et al. (CDF Collaboration), The substructure of high transverse momentum jets observed by CDF II. CDF Note 10199 (2010) Google Scholar
  78. 78.
    T. Aaltonen et al. (CDF Collaboration), Preliminary results of a search for boosted top quarks by CDF II. CDF Note 10234 (2010) Google Scholar
  79. 79.
    J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Multiparton interactions in photoproduction at HERA. Z. Phys. C 72, 637–646 (1996). arXiv:hep-ph/9601371 ADSGoogle Scholar
  80. 80.
    (ATLAS Collaboration), Atlas Monte Carlo tunes for mc09, Tech. Rep. ATL-PHYS-PUB-2010-002 CERN, Geneva, March, 2010 Google Scholar
  81. 81.
    M.G. Albrow et al. (TeV4LHC QCD Working Group Collaboration), Tevatron-for-LHC Report of the QCD working group. arXiv:hep-ph/0610012
  82. 82.
    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes. Phys. Rev. D 82, 074018 (2010). arXiv:1005.3457 ADSCrossRefGoogle Scholar
  83. 83.
    R. Adolphi et al. (CMS Collaboration), Hadronic event shapes in pp collisions at 7 TeV. CMS Phys. Anal. Summ. CMS-PAS-QCD-10-013 (2010) Google Scholar
  84. 84.
    J. Thaler, K. Van Tilburg, Identifying boosted objects with N-subjettiness. J. High Energy Phys. 03, 015 (2011) ADSCrossRefGoogle Scholar
  85. 85.
    A. Hoecker et al., TMVA—toolkit for multivariate data analysis. ArXiv Physics e-prints (Mar., 2007). arXiv:physics/0703039

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • A. Abdesselam
    • 1
  • A. Belyaev
    • 2
    • 3
  • E. Bergeaas Kuutmann
    • 4
  • U. Bitenc
    • 5
  • G. Brooijmans
    • 6
  • J. Butterworth
    • 7
  • P. Bruckman de Renstrom
    • 8
  • D. Buarque Franzosi
    • 9
  • R. Buckingham
    • 1
  • B. Chapleau
    • 10
  • M. Dasgupta
    • 11
  • A. Davison
    • 7
  • J. Dolen
    • 12
  • S. Ellis
    • 13
  • F. Fassi
    • 14
  • J. Ferrando
    • 1
  • M. T. Frandsen
    • 15
  • J. Frost
    • 16
  • T. Gadfort
    • 17
  • N. Glover
    • 18
  • A. Haas
    • 19
  • E. Halkiadakis
    • 20
  • K. Hamilton
    • 21
  • C. Hays
    • 1
  • C. Hill
    • 22
  • J. Jackson
    • 3
  • C. Issever
    • 1
  • M. Karagoz
    • 1
  • A. Katz
    • 23
  • L. Kreczko
    • 24
  • D. Krohn
    • 25
  • A. Lewis
    • 1
  • S. Livermore
    • 1
  • P. Loch
    • 26
  • P. Maksimovic
    • 27
  • J. March-Russell
    • 15
  • A. Martin
    • 28
  • N. McCubbin
    • 3
  • D. Newbold
    • 24
  • J. Ott
    • 29
  • G. Perez
    • 30
  • A. Policchio
    • 13
  • S. Rappoccio
    • 27
  • A. R. Raklev
    • 31
  • P. Richardson
    • 18
  • G. P. Salam
    • 25
    • 32
    • 33
  • F. Sannino
    • 34
  • J. Santiago
    • 35
  • A. Schwartzman
    • 19
  • C. Shepherd-Themistocleous
    • 3
  • P. Sinervo
    • 36
  • J. Sjoelin
    • 37
    • 38
  • M. Son
    • 39
  • M. Spannowsky
    • 40
  • E. Strauss
    • 19
  • M. Takeuchi
    • 41
  • J. Tseng
    • 1
  • B. Tweedie
    • 27
    • 42
  • C. Vermilion
    • 43
  • J. Voigt
    • 29
  • M. Vos
    • 44
  • J. Wacker
    • 19
  • J. Wagner-Kuhr
    • 29
  • M. G. Wilson
    • 19
  1. 1.Department of PhysicsUniversity of OxfordOxfordUK
  2. 2.School of Physics & AstronomyUniversity of SouthamptonSouthamptonUK
  3. 3.Rutherford Appleton LaboratoryScience and Technology Facilities CouncilDidcotUK
  4. 4.Deutsches Elektronen-Synchrotron, DESYZeuthenGermany
  5. 5.Fak. für Mathematik und PhysikAlbert-Ludwigs-UniversitätFreiburg i.Br.Germany
  6. 6.Nevis LaboratoryColumbia UniversityIrvingtonUSA
  7. 7.Department of Physics and AstronomyUniversity College LondonLondonUK
  8. 8.Institute of Nuclear Physics P.A.N.KrakowPoland
  9. 9.Dipartimento di Fisica TeoricaUniversità degli Studi di TorinoTurinItaly
  10. 10.High Energy Physics GroupMcGill UniversityMontréalCanada
  11. 11.School of Physics and AstronomyUniversity of ManchesterManchesterUK
  12. 12.University of California, DavisDavisUSA
  13. 13.Department of PhysicsUniversity of WashingtonSeattleUSA
  14. 14.CNRS/CC-IN2P3VilleurbanneFrance
  15. 15.Dalitz Institute for Theoretical Physics, Department of PhysicsUniversity of OxfordOxfordUK
  16. 16.Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  17. 17.Brookhaven National LaboratoryPhysics DepartmentUptonUSA
  18. 18.Institute of Particle Physics Phenomenology, Department of PhysicsUniversity of DurhamDurhamUK
  19. 19.SLAC National Accelerator LaboratoryMenlo ParkUSA
  20. 20.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA
  21. 21.Sezione di Milano-BicoccaINFNMilanItaly
  22. 22.Department of PhysicsThe Ohio State UniversityColumbusUSA
  23. 23.Department of PhysicsUniversity of MarylandCollege ParkUSA
  24. 24.H.H. Wills Physics LaboratoryUniversity of BristolBristolUK
  25. 25.Department of PhysicsPrinceton UniversityPrincetonUSA
  26. 26.Department of PhysicsUniversity of ArizonaTucsonUSA
  27. 27.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUSA
  28. 28.Fermi National Accelerator LaboratoryBataviaUSA
  29. 29.Institut für Experimentelle Kernphysik, KITKarlsruheGermany
  30. 30.Department of Particle Physics and AstrophysicsWeizmann InstituteRehovotIsrael
  31. 31.Department of PhysicsUniversity of OsloOsloNorway
  32. 32.LPTHE, UPMC Univ. Paris 6 and CNRS UMR 7589ParisFrance
  33. 33.Department of Physics, Theory UnitCERNGeneva 23Switzerland
  34. 34.Center for Particle Physics Phenomenology, CP3-OriginsUniversity of Southern DenmarkOdenseM. Denmark
  35. 35.CAFPE and Depto. de Fisica Teorica y del CosmosU. of GranadaGranadaSpain
  36. 36.Department of PhysicsUniversity of TorontoTorontoCanada
  37. 37.Oskar Klein Centre, Department of PhysicsStockholm UniversityStockholmSweden
  38. 38.Department of PhysicsStockholm UniversityStockholmSweden
  39. 39.Department of PhysicsYale UniversityNew HavenUSA
  40. 40.Institute of Theoretical ScienceUniversity of OregonEugeneUSA
  41. 41.Institute for Theoretical PhysicsUni HeidelbergHeidelbergGermany
  42. 42.Physics DepartmentBoston UniversityBostonUSA
  43. 43.Department of Physics & AstronomyUniversity of LouisvilleLouisvilleUSA
  44. 44.Instituto de Física CorpuscularIFIC/CSIC-UVEGValenciaSpain

Personalised recommendations