Skip to main content
Log in

Effect of Doping on the Magnetic and Sorption Properties of Cobalt-Ferrite Nanoparticles

  • NANOMATERIALS FOR FUNCTIONAL AND STRUCTURAL PURPOSES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The use of magnetic nanoparticles as sorbents for wastewater treatment in various industries can improve the efficiency of this process and reduce the impact of humans on the environment. Therefore, the development of a cost-effective method for the preparation of magnetic nanoparticles with optimal physical–chemical properties, especially high saturation magnetization, is a crucial task in current research. In this study, we use the sol–gel-citrate self-combustion method to synthesize a series of spinel ferrite magnetic nanoparticles with different chemical compositions. A set of cobalt-ferrite nanoparticles with the partial substitution of cobalt by zinc and manganese and iron by aluminum is obtained. Among the investigated samples, the zinc-doped cobalt-ferrite nanoparticles show the highest saturation magnetization of 88 A m2/kg at room temperature. Surface modification of the synthesized materials with polyethylene glycol and sodium dodecyl sulphate can improve their colloidal stability and as a consequence increase their sorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. C. Martinez-Boubeta and K. Simeonidis, Nanoscale Materials in Water Purification (Elsevier, 2019).

    Google Scholar 

  2. N. S. Topare and V. S. Wadgaonkar, Mater. Today: Proc. 77, 8-1(2023).

    CAS  Google Scholar 

  3. H. Lu, L. Zhang, B. Wang, et al., Cellulose 26, 4909 (2019).

    Article  CAS  Google Scholar 

  4. G. Z. Kyzas and K. A. Matis, J. Mol. Liq. 203, 159 (2015).

    Article  CAS  Google Scholar 

  5. A. F. C. Campos, H. A. L. de Oliveira, F. N. Silva, et al., J. Hazard. Mater. 362, 82 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. G. Simonsen, M. Strand, and G. Øye, J. Pet. Sci. Eng. 165, 488 (2018).

    CAS  Google Scholar 

  7. A. P. Maciel, G. Gomide, F. G. Silva, et al., Nanomaterials 13, 514 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. H. A. L. de Oliveira, G. Gomide, C. A. M. de Vieira, et al., Environ. Technol. 2022, 1–17 (2022).

    Google Scholar 

  9. G. A. Mulungulungu, T. Mao, and K. Han, Colloids Surf., A 623,126714 (2021).

    Article  CAS  Google Scholar 

  10. W. Li, J. Liu, Y. Qiu, et al., J. Dispers. Sci. Technol. 40, 1338 (2019).

    Article  CAS  Google Scholar 

  11. A. F. C. Campos, H. A. L. de Oliveira, F. N. Silva, et al., J. Hazard. Mater. 362, 82 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. A. F. C. Campos, P. H. Michels-Brito, F. G. Silva, et al., J. Environ. Chem. Eng. 7, 103031 (2019).

    Article  CAS  Google Scholar 

  13. Y. Vicente-Martinez, M. Caravaca, A. Soto-Meca, and R. Solana-González, Sci. Rep. 2, 1—10 (2020).

    Google Scholar 

  14. H. Park, A. May, L. Portilla, et al., Nat. Sustainability 3, 129 (2019).

    Article  Google Scholar 

  15. Q. Zhu, F. Tao, and Q. Pan, ACS Appl. Mater. Interfaces 2, 3141 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. F. G. da Silva, J. Depeyrot, A. F. C. Campos, et al., J. Nanosci. Nanotechnol, 19, 4888 (2019).

    Article  CAS  Google Scholar 

  17. G. F. Dionne, Magnetic Oxides (Springer, Boston, MA, 2009).

    Book  Google Scholar 

  18. G. Varvaro, A. Omelyanchik, and D. Peddis, Tailored Functional Oxide Nanomaterials (Wiley, 2022).

    Google Scholar 

  19. G. Muscas, N. Yaacoub, G. Concas, et al., Nanoscale 7, 13576 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. D. Peddis, N. Yaacoub, M. Ferretti, et al., J. Phys. Condens. Matter 23, 426004 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. K. R. Sanchez-Lievanos, J. L. Stair, and K. E. Knowles, Inorg. Chem. 60, 4291 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. G. Muscas, S. Jovanović, M. Vukomanović, et al., J. Alloys Compd. 796, 203 (2019).

    Article  CAS  Google Scholar 

  23. D. Carta, M. F. Casula, A. Falqui, et al., J. Phys. Chem. C 113, 8606 (2009).

    Article  CAS  Google Scholar 

  24. M. Albino, E. Fantechi, C. Innocenti, et al., J. Phys. Chem. 123, 6148 (2019).

    CAS  Google Scholar 

  25. G. Lavorato, M. Alzamora, C. Contreras, et al., Part. Part. Syst. Charact. 36, 1 (2019).

    Article  Google Scholar 

  26. V. Mameli, A. Musinu, A. Ardu, et al., Nanoscale 8, 10124 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. S. Jovanović, K. Kumrić, D. Bajuk-Bogdanović, et al., J. Nanosci. Nanotechnol. 19, 5027 (2019).

    Article  Google Scholar 

  28. E. P. Muniz, L. S. D. de Assunção, L. M. de Souza, et al., J. Clean. Prod. 265, 121712 (2020).

    Article  CAS  Google Scholar 

  29. P. A. Vinosha, A. Manikandan, A. C. Preetha, et al., J. Supercond. Nov. Magn. 34, 995 (2021).

    Article  CAS  Google Scholar 

  30. C. Cannas, A. Musinu, D. Peddis, G. J. Piccaluga, J. Nanopart. Res. 6, 223 (2004).

    Article  CAS  Google Scholar 

  31. A. Sutka and G. Mezinskis, Front. Mater. Sci. 6, 128 (2012).

    Article  Google Scholar 

  32. N. Shabelskaya, S. Sulima, E. Sulima, et al., Gels 9, 217 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. Omelyanchik, G. Singh, M. Volochaev, et al., J. Magn. Magn. Mater. 476, 387 (2019).

    Article  CAS  Google Scholar 

  34. A. Omelyanchik, K. Levada, S. Pshenichnikov, et al., Materials (Basel), 13, 5014 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. S. E. Sandler, B. D. Fellows, and O. T. Mefford, Anal. Chem. 91, 14159 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge Univ. Press, New York, 2010).

    Google Scholar 

  37. G. Bertotti, Hysteresis in Magnetism (Elsevier, 1998).

    Google Scholar 

  38. C. Vázquez-Vázquez, M. A. López-Quintela, M. C. Buján-Núñez, et al., J. Nanopart. Res. 13, 1663 (2011).

    Article  Google Scholar 

  39. G. Barrera, M. Coisson, F. Celegato, et al., J. Magn. Magn. Mater. 456, 372 (2018).

    Article  CAS  Google Scholar 

  40. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. A 240, 599 (1948).

    Google Scholar 

  41. G. Muscas, D. Peddis, M. Cobianchi, et al., IEEE Magn. Lett. 10, 1 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Center for Development of Gifted Children (Kaliningrad) for the opportunity to perform X-ray diffraction analysis.

Funding

This work was carried out with financial support from the Russian Science Foundation (grant no. 22-22-20124, regional part no. 08-C/2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Omelyanchik.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aga-Tagieva, S.E., Omelyanchik, A.S., Salnikov, V.D. et al. Effect of Doping on the Magnetic and Sorption Properties of Cobalt-Ferrite Nanoparticles. Nanotechnol Russia 18 (Suppl 1), S69–S75 (2023). https://doi.org/10.1134/S2635167623600979

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167623600979

Navigation