Skip to main content
Log in

Review on Recent Advances of Synthesis, Magnetic Properties, and Water Treatment Applications of Cobalt Ferrite Nanoparticles and Nanocomposites

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nowadays, CoFe2O4 (cobalt ferrite) nanoparticles have fascinated numerous researcher’s consideration because of their latent implementation in water treatment. CoFe2O4 nanoparticles are cost-efficient magnetic materials and are stable under diverse environments. Therefore, they are effortlessly removed from purified water by means of an external magnetic field and reclaimed for quite a lot of cycles. In this analysis, the focus was given on learning the influences of some aspects including calcination temperature, crystalline size, pH, synthesis method, and dopant type on the magnetic properties of CoFe2O4 nanocomposites and nanoparticles. The implementation of CoFe2O4 nanoparticles in water purification and its capability to be united with various nanoparticles for adsorption and photocatalysis were entirely conferred. The chance of retrieval and reprocess of CoFe2O4 nanoparticles and its nanocomposites were discussed. Finally, the holes which are still not built up for study in the modification of physical properties and further magnetic properties of CoFe2O4 nanoparticles for its complete usage in water treatment were delineated. Henceforth, using CoFe2O4 nanoparticles and its nanocomposites at trade scale for water treatment will definitely reduce the expenses of water as it uses visible light as the energy source and because of its capability to be recycled numerous times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Masunga, N., Mmelesi, O.K., Kefeni, K.K., Mamba, B.B.: Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment: Review. J. Environ. Chem. Eng. 7, 103179 (2019)

    Article  Google Scholar 

  2. Mmelesi, O.K., Masunga, N., Kuvarega, A., Nkambule, T.T.I., Mamba, B.B., Kefeni, K.K.: Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Mater. Sci. Semicond. Process. 123, 105523 (2021)

    Article  Google Scholar 

  3. Eibschütz, M., Shtrikman, S., Treves, D.: Mössbauer studies of Fe57 in orthoferrites. Phys. Rev. 156(2), 562 (1967)

    Article  ADS  Google Scholar 

  4. Marezio, M., Remeika, J.P., Dernier, P.D.: The crystal chemistry of the rare earth orthoferrites. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 26(12), 2008–2022 (1970)

    Article  Google Scholar 

  5. Kimura, T.: Magnetoelectric hexaferrites. Annu. Rev. Condens. Matter Phys. 3(1), 93–110 (2012)

    Article  Google Scholar 

  6. Trukhanov, A.V., Panina, L.V., Jabarov, S.H., Korovushkin, V.V., Trukhanov, S.V., Trukhanova, E.L.: Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites. Ceram. Int. 43(15), 12822–12827 (2017)

    Article  Google Scholar 

  7. Ounnunkad, S.: Improving magnetic properties of barium hexaferrites by La or Pr substitution. Solid State Commun. 138(9), 472–475 (2006)

    Article  ADS  Google Scholar 

  8. Manikandan, A., Durka, M., Arul Antony, S.: A novel synthesis, structural, morphological and opto-magnetic characterizations of magnetically separable spinel CoxMn1-xFe2O4 (0 ≤ x ≤1) nano-catalysts. J. Supercond. Nov. Magn. 27, 2841–2857 (2014)

    Article  Google Scholar 

  9. Padmapriya, G., Manikandan, A., Krishnasamy, V., Jaganathan, S.K., Arul Antony, S.: Spinel NixZn1-xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye. J. Mol. Struct. 1119, 39–47 (2016)

    Article  ADS  Google Scholar 

  10. Hema, E., Manikandan, A., Karthika, P., Durka, M., Arul Antony, S., Venkatraman, B.R.: A novel synthesis of Zn2+-doped CoFe2O4 spinel nanoparticles: Structural, morphological, opto-magnetic and catalytic properties. J. Supercond. Nov. Magn. 28, 2539–2552 (2015)

    Article  Google Scholar 

  11. Manikandan, A., Hema, E., Durka, M., Seevakan, K., Alagesan, T., Arul Antony, S.: Room temperature ferromagnetism of magnetically recyclable photocatalyst of Cu1-xMnxFe2O4-TiO2 (0.0 ≤ x ≤ 0.5) nano-composites. J. Supercond. Nov. Magn. 28, 1783–1795 (2015)

    Article  Google Scholar 

  12. Sonia, M.M.L., Anand, S., Vinosel, V.M., Factorer, M.A.J.I., Pauline, S., Manikandan, A.: Effect of lattice strain on structure, morphology and magneto-dielectric properties of NiGdxFe2-xO4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238–251 (2018)

    Article  ADS  Google Scholar 

  13. Tuutijärvi, T., Lu, J., Sillanpää, M., Chen, G.: As (V) adsorption on maghemite nanoparticles. J. Hazard. Mater. 166(2-3), 1415–1420 (2009)

    Article  Google Scholar 

  14. Hu, J., Chen, G., Lo, I.M.C.: Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res. 39(18), 4528–4536 (2005)

    Article  Google Scholar 

  15. Sun, S., Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124(28), 8204–8205 (2002)

    Article  Google Scholar 

  16. Slimani, Y., Baykal, A., Manikandan, A.: Effect of Cr3+ substitution on AC susceptibility of Ba hexafferite nanoparticles. J. Magn. Magn. Mater. 458, 204–212 (2018)

    Article  ADS  Google Scholar 

  17. Silambarasu, A., Manikandan, A., Balakrishnan, K.: Room temperature superparamagnetism and enhanced photocatalytic activity of magnetically reusable spinel ZnFe2O4 nano-catalysts. J. Supercond. Nov. Magn. 30, 2631–2640 (2017)

    Article  Google Scholar 

  18. Asiri, S., Sertkol, M., Guner, S., Gungunes, H., Batoo, K.M., Saleh, T.A., Sozeri, H., Almessiere, M.A., Manikandan, A., Baykal, A.: Hydrothermal synthesis of CoyZnyMn1-2yFe2O4 nanoferrites: Magneto-optical investigation. Ceram. Int. 44, 5751–5759 (2018)

    Article  Google Scholar 

  19. Manikandan, A., Durka, M., Seevakan, K., Arul Antony, S.: A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel MnxMg1-xFe2O4 (0.0 ≤ x ≤ 0.5) nano-photocatalysts. J. Supercond. Nov. Magn. 28, 1405–1416 (2015)

    Article  Google Scholar 

  20. Hill, R.J., Craig, J.R., Gibbs, G.V.: Systematics of the spinel structure type. Phys. Chem. Miner. 4(4), 317–339 (1979)

    Article  ADS  Google Scholar 

  21. Amin, N., Hasan, M.S.U., Majeed, Z., Latif, Z., Ajaz un Nabi, M., Mahmood, K., Ali, A., Mehmood, K., Fatima, M., Akhtar, M., Arshad, M.I., Bibi, A., Iqbal, M.Z., Jabeen, F., Bano, N.: Structural, electrical, optical and dielectric properties of yttrium substituted cadmium ferrites prepared by Co-Precipitation method. Ceram. Int. 46, 20798–20809 (2020)

    Article  Google Scholar 

  22. Makovec, D., Kodre, A., Arčon, I., Drofenik, M.: Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J. Nanopart. Res. 11(5), 1145–1158 (2009)

    Article  ADS  Google Scholar 

  23. Elayakumar, K., Manikandan, A., Dinesh, A., Thanrasu, K., Kanmani Raja, K., Thilak Kumar, R., Slimani, Y., Jaganathan, S.K., Baykal, A.: Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. J. Magn. Magn. Mater. 478, 140–147 (2019)

    Article  ADS  Google Scholar 

  24. Thilagavathi, P., Manikandan, A., Sujatha, S., Jaganathan, S.K., Arul Antony, S.: Sol-gel synthesis and characterization studies of NiMoO4 nanostructures for photocatalytic degradation of methylene blue dye. Nanosci. Nanotechnol. Lett. 8, 438–443 (2016)

    Article  Google Scholar 

  25. Silambarasu, A., Manikandan, A., Balakrishnan, K., Jaganathan, S.K., Manikandan, E., Aanand, J.S.: Comparative study of structural, morphological, magneto-optical and photo-catalytic properties of magnetically reusable spinel MnFe2O4 nano-catalysts. J. Nanosci. Nanotechnol. 18, 3523–3531 (2018)

    Article  Google Scholar 

  26. Seevakan, K., Manikandan, A., Devendran, P., Slimani, Y., Baykal, A., Alagesan, T.: Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. Ceram. Int. 44, 20075–20083 (2018)

    Article  Google Scholar 

  27. Seevakan, K., Manikandan, A., Devendran, P., Shameem, A., Alagesan, T.: Microwave combustion synthesis, magneto-optical and electrochemical properties of NiMoO4 nanoparticles for supercapacitor application. Ceram. Int. 44, 13879–13887 (2018)

    Article  Google Scholar 

  28. Manikandan, A., Sridhar, R., Arul Antony, S., Ramakrishna, S.: A simple aloe vera plant-extracted microwave and conventional combustion synthesis: Morphological, optical and catalytic properties of magnetic CoFe2O4 nanostructures. J. Mol. Struct. 1076, 188–200 (2014)

    Article  ADS  Google Scholar 

  29. Alberti, A.: Location of Brønsted sites in mordenite. Zeolites. 19(5-6), 411–415 (1997)

    Article  Google Scholar 

  30. Beutler, A., Lundgren, E., Nyholm, R., Andersen, J.N., Setlik, B., Heskett, D.: On the adsorption sites for CO on the Rh (111) single crystal surface. Surf. Sci. 371(2-3), 381–389 (1997)

    Article  ADS  Google Scholar 

  31. Holinsworth, B.S., Mazumdar, D., Sims, H., Sun, Q.-C., Yurtisigi, M.K., Sarker, S.K., Gupta, A., Butler, W.H., Musfeldt, J.L.: Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Appl. Phys. Lett. 103(8), 082406 (2013)

    Article  ADS  Google Scholar 

  32. Liu, C., Zou, B., Rondinone, A.J., Zhang, Z.J.: Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. Am. Chem. Soc. 122(26), 6263–6267 (2000)

    Article  Google Scholar 

  33. Bagade, A.A., Ganbavle, V.V., Rajpure, K.Y.: Physicochemical properties of spray-deposited CoFe2O4 thin films. J. Mater. Eng. Perform. 23(8), 2787–2794 (2014)

    Article  Google Scholar 

  34. Cheng, F., Peng, Z., Liao, C., Xu, Z., Gao, S., Yan, C., Wang, D., Wang, J.: Chemical synthesis and magnetic study of nanocrystalline thin films of cobalt spinel ferrites. Solid State Commun. 107(9), 471–476 (1998)

    Article  ADS  Google Scholar 

  35. Amiri, M., Salavati-Niasari, M., Akbari, A.: Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv. Colloid Interf. Sci. 265, 29–44 (2019)

    Article  Google Scholar 

  36. Qin, M., Shuai, Q., Wu, G., Zheng, B., Wang, Z., Wu, H.: Zinc ferrite composite material with controllable morphology and its applications. Mater. Sci. Eng. B. 224, 125–138 (2017)

    Article  Google Scholar 

  37. Darshane, S.L., Deshmukh, R.G., Suryavanshi, S.S., Mulla, I.S.: Gas-sensing properties of zinc ferrite nanoparticles synthesized by the molten-salt route. J. Am. Ceram. Soc. 91(8), 2724–2726 (2008)

    Article  Google Scholar 

  38. Xu, Z., Yang, A., Vittoria, C., Harris, V.G.: Computational study of copper ferrite (CuFe2O4). J. Appl. Phys. 99(8), 08M909 (2006)

    Article  Google Scholar 

  39. Yao-Jen, T., You, C.-F., Chang, C.-K., Wang, S.-L., Chan, T.-S.: Arsenate adsorption from water using a novel fabricated copper ferrite. Chem. Eng. J. 198, 440–448 (2012)

    Google Scholar 

  40. Hasmonay, E., Depeyrot, J., Sousa, M.H., Tourinho, F.A., Bacri, J.-C., Perzynski, R., Raikher, Y.L., Rosenman, I.: Magnetic and optical properties of ionic ferrofluids based on nickel ferrite nanoparticles. J. Appl. Phys. 88(11), 6628–6635 (2000)

    Article  ADS  Google Scholar 

  41. Mahmoodi, N.M.: Nickel ferrite nanoparticle: synthesis, modification by surfactant and dye removal ability. Water Air Soil Pollut. 224(2), 1419 (2013)

    Article  ADS  Google Scholar 

  42. Kharisov, B.I., Dias, H.V.R., Kharissova, O.V.: Mini-review: ferrite nanoparticles in the catalysis. Arab. J. Chem. 12(7), 1234–1246 (2019)

    Article  Google Scholar 

  43. Casbeer, E., Sharma, V.K., Li, X.-Z.: Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep. Purif. Technol. 87, 1–14 (2012)

    Article  Google Scholar 

  44. Mary Teresita, V., Manikandan, A., Avila Josephine, B., Sujatha, S., Arul Antony, S.: Electro-magnetic properties and humidity sensing studies of magnetically recoverable LaMgxFe1-xO3-δ perovskites nano-photocatalysts by sol-gel route. J. Supercond. Nov. Magn. 29, 1691–1701 (2016)

    Article  Google Scholar 

  45. Amiri, S., Shokrollahi, H.: The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C. 33(1), 1–8 (2013)

    Article  Google Scholar 

  46. Giri, A.K., Kirkpatrick, E.M., Moongkhamklang, P., Majetich, S.A., Harris, V.G.: Photomagnetism and structure in cobalt ferrite nanoparticles. Appl. Phys. Lett. 80(13), 2341–2343 (2002)

    Article  ADS  Google Scholar 

  47. Baldi, G., Bonacchi, D., Innocenti, C., Lorenzi, G., Sangregorio, C.: Cobalt ferrite nanoparticles: The control of the particle size and surface state and their effects on magnetic properties. J. Magn. Magn. Mater. 311(1), 10–16 (2007)

    Article  ADS  Google Scholar 

  48. Franco, A., e Silva, F.C.: High temperature magnetic properties of cobalt ferrite nanoparticles. Appl. Phys. Lett. 96(17), 172505 (2010)

    Article  ADS  Google Scholar 

  49. Liu, X., Cui, X., Chen, Y., Zhang, X.-J., Yu, R., Wang, G.-S., Ma, H.: Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles–poly (vinylidene fluoride) composites. Carbon. 95, 870–878 (2015)

    Article  Google Scholar 

  50. Zhang, H., Zhai, C., Wu, J., Ma, X., Yang, D.: Cobalt ferrite nanorings: Ostwald ripening dictated synthesis and magnetic properties. ChemComm. 43, 5648–5650 (2008)

    Google Scholar 

  51. Min, F., Jiao, Q., Zhao, Y.: In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites. Mater. Charact. 86, 303–315 (2013)

    Article  Google Scholar 

  52. Abbas, M., Rao, B.P., Islam, M.N., Kim, K.W., Naga, S.M., Takahashi, M., Kim, C.G.: Size-controlled high magnetization CoFe2O4 nanospheres and nanocubes using rapid one-pot sonochemical technique. Ceram. Int. 40(2), 3269–3276 (2014)

    Article  Google Scholar 

  53. Fan, H., Keane, M., Singh, P., Han, M.: Electrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cell. J. Power Sources. 268, 634–639 (2014)

    Article  ADS  Google Scholar 

  54. Fan, H.-M., Yi, J.-B., Yang, Y., Kho, K.-W., Tan, H.-R., Shen, Z.-X., Ding, J., Sun, X.-W., Olivo, M.C., Feng, Y.-P.: Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano. 3(9), 2798–2808 (2009)

    Article  Google Scholar 

  55. Chen, I.-H., Wang, C.-C., Chen, C.-Y.: Fabrication and characterization of magnetic cobalt ferrite/polyacrylonitrile and cobalt ferrite/carbon nanofibers by electrospinning. Carbon. 48(3), 604–611 (2010)

    Article  Google Scholar 

  56. Martens, J.W.D., Peeters, W.L., Van Noort, H.M., Erman, M.: Optical, magneto-optical and mössbauer spectroscopy on Co3+ substituted cobalt ferrite Co2+ Fe2− xCo3+xO4 (0⩽ x⩽ 2). J. Phys. Chem. Solids. 46(4), 411–416 (1985)

    Article  ADS  Google Scholar 

  57. Sawatzky, G.A., Van Der Woude, F., Morrish, A.H.: Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J. Appl. Phys. 39(2), 1204–1205 (1968)

    Article  ADS  Google Scholar 

  58. Harris, V.G., Koon, N.C., Williams, C.M., Zhang, Q., Abe, M., Kirkland, J.P., McKeown, D.A.: Direct measurement of octahedral and tetrahedral site environments in NiZn-ferrites. IEEE Trans. Magn. 31(6), 3473–3475 (1995)

    Article  ADS  Google Scholar 

  59. Urusov, V.S.: Interaction of cations on octahedral and tetrahedral sites in simple spinels. Phys. Chem. Miner. 9(1), 1–5 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  60. Kugel, K.I., Khomskiĭ, D.I.: The Jahn-Teller effect and magnetism: transition metal compounds. Soviet Physics Uspekhi. 25(4), 231 (1982)

    Article  ADS  Google Scholar 

  61. Longuet-Higgins, H.C., Öpik, U., Pryce, M.H.L., Sack, R.A.: Studies of the Jahn-Teller effect. II. The dynamical problem. Proc. Math. Phys. Eng. Sci. 244(1236), 1–16 (1958)

    MATH  Google Scholar 

  62. Öpik, U., Pryce, M.H.L.: Studies of the Jahn-Teller effect. I. A survey of the static problem. Proc. Math. Phys. Eng. Sci. 238(1215), 425–447 (1957)

    MATH  Google Scholar 

  63. Menezes, P.W., Indra, A., Bergmann, A., Chernev, P., Walter, C., Dau, H., Strasser, P., Driess, M.: Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water. J. Mater. Chem. A. 4(25), 10014–10022 (2016)

    Article  Google Scholar 

  64. Porta, P., Anichini, A.: Distribution of cobalt ions among octahedral and tetrahedral sites in CoGaxAl2–xO4 spinel solid solutions. J. Chem. Soc. Faraday Trans. 1.: Physical Chemistry in Condensed Phases. 76, 2448–2456 (1980)

    Article  Google Scholar 

  65. Toksha, B.G., Shirsath, S.E., Patange, S.M., Jadhav, K.M.: Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid State Commun. 147(11-12), 479–483 (2008)

    Article  ADS  Google Scholar 

  66. Aghav, P.S., Dhage, V.N., Mane, M.L., Shengule, D.R., Dorik, R.G., Jadhav, K.M.: Effect of aluminum substitution on the structural and magnetic properties of cobalt ferrite synthesized by sol–gel auto combustion process. Phys. B Condens. Matter. 406(23), 4350–4354 (2011)

    Article  ADS  Google Scholar 

  67. Cannas, C., Musinu, A., Piccaluga, G., Fiorani, D., Peddis, D., et al.: Magnetic properties of cobalt ferrite–silica nanocomposites prepared by a sol-gel autocombustion technique. J. Chem. Phys. 125(16), 164714 (2006)

    Article  ADS  Google Scholar 

  68. Komarneni, S., D’Arrigo, M.C., Leonelli, C., Pellacani, G.C., Katsuki, H.: Microwave-hydrothermal synthesis of nanophase ferrites. J. Am. Ceram. Soc. 81(11), 3041–3043 (1998)

    Article  Google Scholar 

  69. Zhao, L., Zhang, H., Xing, Y., Song, S., Yu, S., Shi, W., Guo, X., Yang, J., Lei, Y., Cao, F.: Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 181(2), 245–252 (2008)

    Article  ADS  Google Scholar 

  70. Salunkhe, A.B., Khot, V.M., Phadatare, M.R., Pawar, S.H.: Combustion synthesis of cobalt ferrite nanoparticles—Influence of fuel to oxidizer ratio. J. Alloys Compd. 514, 91–96 (2012)

    Article  Google Scholar 

  71. Khandekar, M.S., Kambale, R.C., Patil, J.Y., Kolekar, Y.D., Suryavanshi, S.S.: Effect of calcination temperature on the structural and electrical properties of cobalt ferrite synthesized by combustion method. J. Alloys Compd. 509(5), 1861–1865 (2011)

    Article  Google Scholar 

  72. Gul, I.H., Maqsood, A., Naeem, M., Naeem Ashiq, M.: Optical, magnetic and electrical investigation of cobalt ferrite nanoparticles synthesized by co-precipitation route. J. Alloys Compd. 507(1), 201–206 (2010)

    Article  Google Scholar 

  73. Shi, Y., Ding, J., Yin, H.: CoFe2O4 nanoparticles prepared by the mechanochemical method. J. Alloys Compd. 308(1-2), 290–295 (2000)

    Article  Google Scholar 

  74. Fariñas, J.C., Moreno, R., Pérez, A., García, M.A., García-Hernández, M., Salvador, M.D., Borrell, A.: Microwave-assisted solution synthesis, microwave sintering and magnetic properties of cobalt ferrite. J. Eur. Ceram. Soc. 38(5), 2360–2368 (2018)

    Article  Google Scholar 

  75. Cedeño-Mattei, Y., Perales-Pérez, O., Uwakweh, O.N.C.: Effect of high-energy ball milling time on structural and magnetic properties of nanocrystalline cobalt ferrite powders. J. Magn. Magn. Mater. 341, 17–24 (2013)

    Article  ADS  Google Scholar 

  76. Goodarz Naseri, M., Bin Saion, E., Abbastabar Ahangar, H., Hashim, M., Shaari, A.H.: Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method. J. Magn. Magn. Mater. 323(13), 1745–1749 (2011)

    Article  ADS  Google Scholar 

  77. Pillai, V., Shah, D.O.: Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163(1-2), 243–248 (1996)

    Article  ADS  Google Scholar 

  78. Ibrahim, A.M., El-Latif, M.M.A., Mahmoud, M.M.: Synthesis and characterization of nano-sized cobalt ferrite prepared via polyol method using conventional and microwave heating techniques. J. Alloys Compd. 506(1), 201–204 (2010)

    Article  Google Scholar 

  79. Moayyer, H.A., Ataie, A.: Investigation on phase evolution in the processing of nano-crystalline cobalt ferrite by solid-state reaction route. In Adv. Mater. Research, vol. 829, pp. 767-771. Trans Tech Publications Ltd (2014)

  80. Houshiar, M., Zebhi, F., Razi, Z.J., Alidoust, A., Askari, Z.: Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater. 371, 43–48 (2014)

    Article  ADS  Google Scholar 

  81. Allaedini, G.: Siti Masrinda Tasirin, and Payam Aminayi, Magnetic properties of cobalt ferrite synthesized by hydrothermal method. Int. Nano Lett. 5(4), 183–186 (2015)

    Article  Google Scholar 

  82. Venturini, J., Piva, D.H., da Cunha, J.B.M., Bergmann, C.P.: Effect of the thermal treatment on the magnetic and structural properties of cobalt ferrite particles. Ceram. Int. 42(14), 15183–15188 (2016)

    Article  Google Scholar 

  83. Varma, P.C.R., Manna, R.S., Banerjee, D., Varma, M.R., Suresh, K.G., Nigam, A.K.: Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: A comparative study. J. Alloys Compd. 453(1-2), 298–303 (2008)

    Article  Google Scholar 

  84. Karimi, Z., Mohammadifar, Y., Shokrollahi, H., Asl, S.K., Yousefi, G., Karimi, L.: Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. J. Magn. Magn. Mater. 361, 150–156 (2014)

    Article  ADS  Google Scholar 

  85. Juliana, B., Silva, W.D.B., Mohallem, N.D.S.: Influence of heat treatment on cobalt ferrite ceramic powders. Mater. Sci. Eng. B. 112(2-3), 182–187 (2004)

    Article  Google Scholar 

  86. Mazario, E., Menéndez, N., Herrasti, P., Cañete, M., Connord, V., Carrey, J.: Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles. J. Phys. Chem. C. 117(21), 11405–11411 (2013)

    Article  Google Scholar 

  87. Verde, E.L., Landi, G.T., Gomes, J.A., Sousa, M.H., Bakuzis, A.F.: Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations. J. Appl. Phys. 111(12), 123902 (2012)

    Article  ADS  Google Scholar 

  88. Vlazan, P., Miron, I., Sfirloaga, P.: Cobalt ferrite substituted with Mn: synthesis method, characterization and magnetic properties. Ceram. Int. 41(3), 3760–3765 (2015)

    Article  Google Scholar 

  89. Wang, D.-s., Wu, R., Freeman, A.J.: First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Phys. Rev. B. 47(22), 14932 (1993)

    Article  ADS  Google Scholar 

  90. Hikami, S., Larkin, A.I., Nagaoka, Y.: Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 63(2), 707–710 (1980)

    Article  ADS  Google Scholar 

  91. Pesin, D., Balents, L.: Mott physics and band topology in materials with strong spin–orbit interaction. Nat. Phys. 6(5), 376–381 (2010)

    Article  Google Scholar 

  92. Leslie-Pelecky, D.L., Rieke, R.D.: Magnetic properties of nanostructured materials. Chem. Mater. 8(8), 1770–1783 (1996)

    Article  Google Scholar 

  93. Bucher, J.P., Douglass, D.C., Bloomfield, L.A.: Magnetic properties of free cobalt clusters. Phys. Rev. Lett. 66(23), 3052 (1991)

    Article  ADS  Google Scholar 

  94. Sato, T., Iijima, T., Seki, M., Inagaki, N.: Magnetic properties of ultrafine ferrite particles. J. Magn. Magn. Mater. 65(2-3), 252–256 (1987)

    Article  ADS  Google Scholar 

  95. Andersson, J.-O., Fernandez Guillermet, A., Hillert, M., Jansson, B., Sundman, B.: A compound-energy model of ordering in a phase with sites of different coordination numbers. Acta Metall. 34(3), 437–445 (1986)

    Article  Google Scholar 

  96. Zhang, R., Sun, L., Wang, Z., Hao, W., Cao, E., Zhang, Y.: Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method. Mater. Res. Bull. 98, 133–138 (2018)

    Article  Google Scholar 

  97. Salunkhe, A.B., Khot, V.M., Ruso, J.M., Patil, S.I.: Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 419, 533–542 (2016)

    Article  ADS  Google Scholar 

  98. Horak, D., Babič, M., Mackova, H., Beneš, M.J.: Preparation and properties of magnetic nano-and microsized particles for biological and environmental separations. J. Sep. Sci. 30(11), 1751–1772 (2007)

    Article  Google Scholar 

  99. Liu, C., Rondinone, A.J., Zhang, Z.J.: Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties. Pure Appl. Chem. 72(1-2), 37–45 (2000)

    Article  Google Scholar 

  100. Rondinone, A.J., Samia, A.C.S., Zhang, Z.J.: Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B. 103(33), 6876–6880 (1999)

    Article  Google Scholar 

  101. Annie Vinosha, P., Jerome Das, S.: The role of pH on the structural, optical, magnetic and electrical properties of cobalt ferrite nanoparticles with their enhanced application in wastewater treatment. Materials today proceedings. 5, 8662–8671 (2018)

    Article  Google Scholar 

  102. Silveyra, J.M., Ferrara, E., Huber, D.L., Monson, T.C.: Soft magnetic materials for a sustainable and electrified world. Science. 362(6413) (2018)

  103. Köseoğlu, Y., Alan, F., Tan, M., Yilgin, R., Öztürk, M.: Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38(5), 3625–3634 (2012)

    Article  Google Scholar 

  104. Zhang, Y., Yang, Z., Yin, D., Liu, Y., Fei, C.L., Xiong, R., Shi, J., Yan, G.L.: Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. J. Magn. Magn. Mater. 322(21), 3470–3475 (2010)

    Article  ADS  Google Scholar 

  105. Rafferty, A., Prescott, T., Brabazon, D.: Sintering behaviour of cobalt ferrite ceramic. Ceram. Int. 34(1), 15–21 (2008)

    Article  Google Scholar 

  106. Vázquez-Vázquez, C., López-Quintela, M.A., Buján-Núñez, M.C., Rivas, J.: Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles. J. Nanopart. Res. 13(4), 1663–1676 (2011)

    Article  ADS  Google Scholar 

  107. Meron, T., Rosenberg, Y., Lereah, Y., Markovich, G.: Synthesis and assembly of high-quality cobalt ferrite nanocrystals prepared by a modified sol–gel technique. J. Magn. Magn. Mater. 292, 11–16 (2005)

    Article  ADS  Google Scholar 

  108. Rashad, M.M., Mohamed, R.M., Ibrahim, M.A., Ismail, L.F.M., Abdel-Aal, E.A.: Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Technol. 23(3), 315–323 (2012)

    Article  Google Scholar 

  109. Cannas, C., Falqui, A., Musinu, A., Peddis, D., Piccaluga, G.: CoFe2O4 nanocrystalline powders prepared by citrate-gel methods: synthesis, structure and magnetic properties. J. Nanopart. Res. 8(2), 255–267 (2006)

    Article  ADS  Google Scholar 

  110. Xiao, S.H., Jiang, W.F., Li, L.Y., Li, X.J.: Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder. Mater. Chem. Phys. 106(1), 82–87 (2007)

    Article  Google Scholar 

  111. Jing, P., Jinlu, D., Jin, C., Wang, J., Pan, L., Li, J., Liu, Q.: Improved coercivity and considerable saturation magnetization of cobalt ferrite (CoFe2O4) nanoribbons synthesized by electrospinning. J. Mater. Sci. 51(2), 885–892 (2016)

    Article  ADS  Google Scholar 

  112. Yadav, R.S., Kuřitka, I., Vilcakova, J., Havlica, J., Masilko, J., Kalina, L., Tkacz, J., Švec, J., Enev, V., Hajdúchová, M.: Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv. Nat. Sci. Nanosci. Nanotechnol. 8(4), 045002 (2017)

    Article  ADS  Google Scholar 

  113. Sajjia, M., Oubaha, M., Hasanuzzaman, M., Olabi, A.G.: Developments of cobalt ferrite nanoparticles prepared by the sol–gel process. Ceram. Int. 40(1), 1147–1154 (2014)

    Article  Google Scholar 

  114. Fayazzadeh, S., Khodaei, M., Arani, M., Mahdavi, S.R., Nizamov, T., Majouga, A.: Magnetic Properties and Magnetic Hyperthermia of Cobalt Ferrite Nanoparticles Synthesized by Hydrothermal Method. J. Supercond. Nov. Magn. no. 7, 2227-2233 (2020)

  115. Hosni, N., Zehani, K., Bartoli, T., Bessais, L., Maghraoui-Meherzi, H.: Semi-hard magnetic properties of nanoparticles of cobalt ferrite synthesized by the co-precipitation process. J. Alloys Compd. 694, 1295–1301 (2017)

    Article  Google Scholar 

  116. Annie Vinosha, P., Xavier, B., Krishnan, S., Das, S.J.: Investigation on the Magnetically Separable Zn Substituted CoFe2O4 Nanoparticles with Enhanced Photo-Fenton Degradation. J. Nanosci. Nanotechnol. 18, 5354–5366 (2018)

    Article  Google Scholar 

  117. Senthil, V.P., Gajendiran, J., Gokul Raj, S., Shanmugavel, T., Ramesh Kumar, G., Parthasaradhi Reddy, C.: Study of structural and magnetic properties of cobalt ferrite (CoFe2O4) nanostructures. Chem. Phys. Lett. 695, 19–23 (2018)

    Article  ADS  Google Scholar 

  118. Amir, M., Gungunes, H., Slimani, Y., Tashkandi, N., El Sayed, H.S., Aldakheel, F., Sertkol, M., Sozeri, H., Manikandan, A., Ercan, I., Baykal, A.: Mössbauer studies and magnetic properties of cubic CuFe2O4 nanoparticles. J. Supercond. Nov. Magn. 32(3), 557–564 (2019)

    Article  Google Scholar 

  119. Fernández, C.P., Zabotto, F.L., Garcia, D., Kiminami, R.H.G.A.: In situ sol–gel co-synthesis under controlled pH and microwave sintering of PZT/CoFe2O4 magnetoelectric composite ceramics. Ceram. Int. 42(2), 3239–3249 (2016)

    Article  Google Scholar 

  120. Walther, T., Straube, U., Köferstein, R., Ebbinghaus, S.G.: Hysteretic magnetoelectric behavior of CoFe2O4–BaTiO3 composites prepared by reductive sintering and reoxidation. J. Mater. Chem. C. 4(21), 4792–4799 (2016)

    Article  Google Scholar 

  121. Chang, C.-J., Lee, Z., Chu, K.-W., Wei, Y.-H.: CoFe2O4@ ZnS core–shell spheres as magnetically recyclable photocatalysts for hydrogen production. J. Taiwan Inst. Chem. Eng. 66, 386–393 (2016)

    Article  Google Scholar 

  122. Hassani, A., Eghbali, P., Ekicibil, A., Metin, Ö.: Monodisperse cobalt ferrite nanoparticles assembled on mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4): a magnetically recoverable nanocomposite for the photocatalytic degradation of organic dyes. J. Magn. Magn. Mater. 456, 400–412 (2018)

    Article  ADS  Google Scholar 

  123. Andhare, D.D., Patade, S.R., Kounsalye, J.S., Jadhav, K.M.: Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Phys. B Condens. Matter. 583, 412051 (2020)

    Article  Google Scholar 

  124. Shinde, A.B., Dhage, V.N., Jadhav, K.M.: Structural and magnetic properties of indium substituted cobalt ferrite nanoparticles synthesized by Sol-Gel Auto-combustion technique. Int J Eng Adv Tech. 3, 177 (2013)

    Google Scholar 

  125. Satheeshkumar, M.K., Ranjith Kumar, E., Srinivas, C., Suriyanarayanan, N., Deepty, M., Prajapat, C.L., Rao, T.V.C., Sastry, D.L.: Study of structural, morphological and magnetic properties of Ag substituted cobalt ferrite nanoparticles prepared by honey assisted combustion method and evaluation of their antibacterial activity. J. Magn. Magn. Mater. 469, 691–697 (2019)

    Article  ADS  Google Scholar 

  126. Elayakumar, K., Dinesh, A., Manikandan, A., Palanivelu, M., Kavitha, G., Prakash, S., Kumar, R.T., Jaganathan, S.K., Baykal, A.: Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157–165 (2019)

    Article  ADS  Google Scholar 

  127. Mariosi, F.R., Venturini, J., da Cas Viegas, A., Bergmann, C.P.: Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceram. Int. 46(3), 2772–2779 (2020)

    Article  Google Scholar 

  128. Jabbar, R., Sabeeh, S.H., Hameed, A.M.: Structural, dielectric and magnetic properties of Mn+2 doped cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 494, 165726 (2020)

    Article  Google Scholar 

  129. Sadaqat, A., Almessiere, M., Slimani, Y., Guner, S., Sertkol, M., Albetran, H., Baykal, A., Shirsath, S.E., Ozcelik, B., Ercan, I.: Structural, optical and magnetic properties of Tb3+ substituted Co nanoferrites prepared via sonochemical approach. Ceram. Int. 45(17), 22538–22546 (2019)

    Article  Google Scholar 

  130. Omelyanchik, A., Singh, G., Volochaev, M., Sokolov, A., Rodionova, V., Peddis, D.: Tunable magnetic properties of Ni-doped CoFe2O4 nanoparticles prepared by the sol–gel citrate self-combustion method. J. Magn. Magn. Mater. 476, 387–391 (2019)

    Article  ADS  Google Scholar 

  131. Almessiere, M.A., Slimani, Y., Korkmaz, A.D., Guner, S., Sertkol, M., Shirsath, S.E., Baykal, A.: Structural, optical and magnetic properties of Tm3+ substituted cobalt spinel ferrites synthesized via sonochemical approach. Ultrason. Sonochem. 54, 1–10 (2019)

    Article  Google Scholar 

  132. Das, J., Moholkar, V.S., Chakma, S.: Structural, magnetic and optical properties of sonochemically synthesized Zr-ferrite nanoparticles. Powder Technol. 328, 1–6 (2018)

    Article  Google Scholar 

  133. Kiran, V.S., Sumathi, S.: Comparison of catalytic activity of bismuth substituted cobalt ferrite nanoparticles synthesized by combustion and co-precipitation method. J. Magn. Magn. Mater. 421, 113–119 (2017)

    Article  ADS  Google Scholar 

  134. Kumbhar, A., Spinu, L., Agnoli, F., Wang, K.-Y., Zhou, W., O'Connor, C.J.: Magnetic properties of cobalt and cobalt-platinum alloy nanoparticles synthesized via microemulsion technique. IEEE Trans. Magn. 37(4), 2216–2218 (2001)

    Article  ADS  Google Scholar 

  135. Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A.: Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308(2), 289–295 (2007)

    Article  ADS  Google Scholar 

  136. Jansi Rani, B., Ravina, M., Saravanakumar, B., Ravi, G., Ganesh, V., Ravichandran, S., Yuvakkumar, R.: Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles. Nano-Structures and Nano-Objects. 14, 84–91 (2018)

    Article  Google Scholar 

  137. Ngo, A.T., Bonville, P., Pileni, M.P.: Spin canting and size effects in nanoparticles of nonstoichiometric cobalt ferrite. J. Appl. Phys. 89(6), 3370–3376 (2001)

    Article  ADS  Google Scholar 

  138. Zhao, L., Yang, H., Zhao, X., Yu, L., Cui, Y., Feng, S.: Magnetic properties of CoFe2O4 ferrite doped with rare earth ion. Mater. Lett. 60(1), 1–6 (2006)

    Article  Google Scholar 

  139. Naik, S.R., Salker, A.V.: Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 22(6), 2740–2750 (2012)

    Article  Google Scholar 

  140. López-Ortega, A., Lottini, E.: Cesar de Julian Fernandez, and Claudio Sangregorio, Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 27(11), 4048–4056 (2015)

    Article  Google Scholar 

  141. Wu, X., Ding, Z., Song, N., Lin, L., Wang, W.: Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles. Ceram. Int. 42(3), 4246–4255 (2016)

    Article  Google Scholar 

  142. Mahalakshmi, S., Srinivasa Manja, K., Nithiyanantham, S.: Electrical properties of nanophase ferrites doped with rare earth ions. J. Supercond. Nov. Magn. 27(9), 2083–2088 (2014)

    Article  Google Scholar 

  143. Ahmed, M.A., Ateia, E., El-Dek, S.I.: Spectroscopic analysis of ferrite doped with different rare earth elements. Vib. Spectrosc. 30(1), 69–75 (2002)

    Article  Google Scholar 

  144. Gupta, A.K., Naregalkar, R.R., Vaidya, V.D., Gupta, M.: Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (London). 3, 23–39 (2007)

    Article  Google Scholar 

  145. Goutham, R., Gopinath, K.P., Ramprasath, A., Srikanth, B., Badri Narayan, R.: High-Performance Photocatalysts for Organic Reactions. In Nanophotocatalysis and Environmental Applications, pp. 219-270. Springer, Cham 2019

  146. Nader, G.: Khaligh, and Mohd Rafie Johan, Recent Advances in Water Treatment Using Graphene-based Materials, Mini Rev. Org. Chem. 17(1), 74–90 (2020)

    Google Scholar 

  147. Qiu, W., Yang, D., Xu, J., Hong, B., Jin, H., Jin, D., Peng, X., Li, J., Ge, H., Wang, X.: Efficient removal of Cr (VI) by magnetically separable CoFe2O4/activated carbon composite. J. Alloys Compd. 678, 179–184 (2016)

    Article  Google Scholar 

  148. Chen, J., Zhao, D., Diao, Z., Wang, M., Shen, S.: Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: a case study of (Co, Ni)Fe2O4 modification. Sci. Bull. 61(4), 292–301 (2016)

    Article  Google Scholar 

  149. Martins, P., Caparros, C., Gonçalves, R., Martins, P.M., Benelmekki, M., Botelho, G., Lanceros-Mendez, S.: Role of nanoparticle surface charge on the nucleation of the electroactive β-poly (vinylidene fluoride) nanocomposites for sensor and actuator applications. J. Phys. Chem. C. 116(29), 15790–15794 (2012)

    Article  Google Scholar 

  150. Yao, Y., Yang, Z., Zhang, D., Peng, W., Sun, H., Wang, S.: Magnetic CoFe2O4–graphene hybrids: facile synthesis, characterization, and catalytic properties. Ind. Eng. Chem. Res. 51(17), 6044–6051 (2012)

    Article  Google Scholar 

  151. Fan, C., Li, K., Li, J., Ying, D., Wang, Y., Jia, J.: Comparative and competitive adsorption of Pb (II) and Cu (II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles. J. Hazard. Mater. 326, 211–220 (2017)

    Article  Google Scholar 

  152. Zaumseil, J., Sirringhaus, H.: Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107(4), 1296–1323 (2007)

    Article  Google Scholar 

  153. Kumar, A., Pandey, G.: A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J. 1(3), 1–10 (2017)

    Google Scholar 

  154. Pan, X., Chen, Q., He, M., Sun, X., Wang, X.: Cobalt ferrite–polyaniline heteroarchitecture: a magnetically recyclable photocatalyst with highly enhanced performances. J. Mater. Chem. 22(34), 17485–17493 (2012)

    Article  Google Scholar 

  155. Kalam, A., Al-Sehemi, A.G., Assiri, M., Gaohui, D., Ahmad, T., Ahmad, I., Pannipara, M.: Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light. Results Phys. 8, 1046–1053 (2018)

    Article  ADS  Google Scholar 

  156. Govan, J., Gun'ko, Y.K.: Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials. 4(2), 222–241 (2014)

    Article  Google Scholar 

  157. Barathiraja, C., Manikandan, A., Uduman Mohideen, A.M., Jayasree, S., Arul Antony, S.: Magnetically recyclable spinel MnxNi1-xFe2O4 (x = 0.0–0.5) nano-photocatalysts: Structural, morphological and opto-magnetic properties. J. Supercond. Nov. Magn. 29, 477–486 (2016)

    Article  Google Scholar 

  158. Khedr, M.H., Omar, A.A., Abdel-Moaty, S.A.: Reduction of carbon dioxide into carbon by freshly reduced CoFe2O4 nanoparticles. Mater. Sci. Eng. A. 432(1-2), 26–33 (2006)

    Article  Google Scholar 

  159. Wu, H., Liu, G., Xue, W., Zhang, J., Yu, C., Shi, J., Yang, H., Hu, H., Yang, S.: Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater. 7(9), 3496–3504 (2011)

    Article  Google Scholar 

  160. Wang, L., Zhuo, L., Cheng, H., Zhang, C., Zhao, F.: Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries. J. Power Sources. 283, 289–299 (2015)

    Article  ADS  Google Scholar 

  161. Li, Z.H., Zhao, T.P., Zhan, X.Y., Gao, D.S., Xiao, Q.Z., Lei, G.T.: High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries, Electrochim. Acta. 55(15), 4594–4598 (2010)

    Google Scholar 

  162. Kooti, M., Afshari, M.: Magnetic cobalt ferrite nanoparticles as an efficient catalyst for oxidation of alkenes. Sci. Iran. 19(6), 1991–1995 (2012)

    Article  Google Scholar 

  163. Kim, E.S., Kang, H.J., Magesh, G., Kim, J.Y., Jang, J.-W., Lee, J.S.: Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. ACS Appl. Mater. Interfaces. 6(20), 17762–17769 (2014)

    Article  Google Scholar 

  164. Chu, Y.-Q., Zheng-Wen, F., Qin, Q.-Z.: Cobalt ferrite thin films as anode material for lithium ion batteries, Electrochim. Acta. 49(27), 4915–4921 (2004)

    Google Scholar 

  165. Bahgat, M., Farghaly, F.E., Basir, S.M.A., Fouad, O.A.: Synthesis, characterization and magnetic properties of microcrystalline lithium cobalt ferrite from spent lithium-ion batteries. J. Mater. Process. Technol. 183(1), 117–121 (2007)

    Article  Google Scholar 

  166. Mills, A., Davies, R.H., Worsley, D.: Water purification by semiconductor photocatalysis. Chem. Soc. Rev. 22(6), 417–425 (1993)

    Article  Google Scholar 

  167. Fox, M.A., Dulay, M.T.: Heterogeneous photocatalysis. Chem. Rev. 93(1), 341–357 (1993)

    Article  Google Scholar 

  168. Esswein, A.J., Nocera, D.G.: Hydrogen production by molecular photocatalysis. Chem. Rev. 107(10), 4022–4047 (2007)

    Article  Google Scholar 

  169. Xu, Y., Schoonen, M.A.A.: The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85(3-4), 543–556 (2000)

    Article  ADS  Google Scholar 

  170. Jasieniak, J., Califano, M., Watkins, S.E.: Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano. 5(7), 5888–5902 (2011)

    Article  Google Scholar 

  171. Xiang, Q., Yu, J., Wong, P.K.: Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J. Colloid Interface Sci. 357(1), 163–167 (2011)

    Article  ADS  Google Scholar 

  172. Sen, R., Jain, P., Patidar, R., Srivastava, S., Rana, R.S., Gupta, N.: Synthesis and characterization of nickel ferrite (NiFe2O4) nanoparticles prepared by sol-gel method. Mater. Today: Process. 2(4-5), 3750–3757 (2015)

    Google Scholar 

  173. Zakiyah, L.B., Saion, E., Al-Hada, N.M., Gharibshahi, E., Salem, A., Soltani, N., Gene, S.: Up-scalable synthesis of size-controlled copper ferrite nanocrystals by thermal treatment method. Mater Sci Semicond Process, 564-569 (2015)

  174. Shyamaldas, M.B., Manoharan, C.: Dependence of structure/morphology on electrical/magnetic properties of hydrothermally synthesised cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 493, 165703 (2020)

    Article  Google Scholar 

  175. Dey, A., Singh, R., Purkait, M.K.: Cobalt ferrite nanoparticles aggregated schwertmannite: A novel adsorbent for the efficient removal of arsenic. J.Water Process. Eng. 3, 1–9 (2014)

    Article  Google Scholar 

  176. Garcia-Muñoz, P., Fresno, F., de la pena O’Shea, V.A., Keller, N.: Ferrite materials for photoassisted environmental and solar fuels applications. Top. Curr. Chem. 378(1), 6 (2020)

    Article  Google Scholar 

  177. Singh, K., Arora, S.: Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit. Rev. Environ. Sci. Technol. 41(9), 807–878 (2011)

    Article  Google Scholar 

  178. Vasanth Kumar, K., Porkodi, K., Rocha, F.: Langmuir–Hinshelwood kinetics–a theoretical study. Catal. Commun. 9(1), 82–84 (2008)

    Article  Google Scholar 

  179. Sun, M., Han, X., Chen, S.: Synthesis and photocatalytic activity of nano-cobalt ferrite catalyst for the photo-degradation various dyes under simulated sunlight irradiation. Mater. Sci. Semicond. Process. 91, 367–376 (2019)

    Article  Google Scholar 

  180. Parhizkar, J., Habibi, M.H., Mosavian, S.Y.: Synthesis and characterization of nano CoFe2O4 prepared by sol-gel auto-combustion with ultrasonic irradiation and evaluation of photocatalytic removal and degradation kinetic of reactive red 195. Silicon. 11(2), 1119–1129 (2019)

    Article  Google Scholar 

  181. Harraz, F.A., Mohamed, R.M., Rashad, M.M., Wang, Y.C., Sigmund, W.: Magnetic nanocomposite based on titania–silica/cobalt ferrite for photocatalytic degradation of methylene blue dye. Ceram. Int. 40(1), 375–384 (2014)

    Article  Google Scholar 

  182. Uzunoglu, D., Ergut, M., Karacabey, P., Ozer, A.: Synthesis of cobalt ferrite nanoparticles via chemical precipitation as na effective photocatalyst for photo Fenton-like degradation of methylene blue. Desalination Water Treat. 172, 96 (2019)

    Article  Google Scholar 

  183. Labchir, N., Amaterz, E., Hannour, A.: Abderrahim Ait hssi, Didier Vincent, Ahmed Ihlal, and Mohammed Sajieddine, Highly efficient nanostructured CoFe2O4 thin film electrodes for electrochemical degradation of rhodamine B. Water Environ. Res. 92(5), 759–765 (2020)

    Article  Google Scholar 

  184. Hachem, C., Bocquillon, F., Zahraa, O., Bouchy, M.: Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes Pigments. 49(2), 117–125 (2001)

    Article  Google Scholar 

  185. Sonu, V.D., Sharma, S., Raizada, P., Hosseini-Bandegharaei, A., Gupta, V.K., Singh, P.: Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J. Saudi Chem. Soc. 23(8), 1119–1136 (2019)

    Article  Google Scholar 

  186. He, G., Ding, J., Zhang, J., Hao, Q., Chen, H.: One-step ball-milling preparation of highly photocatalytic active CoFe2O4–reduced graphene oxide heterojunctions for organic dye removal. Ind. Eng. Chem. Res. 54(11), 2862–2867 (2015)

    Article  Google Scholar 

  187. Lu, C., Guan, W., Zhang, G., Ye, L., Zhou, Y., Zhang, X.: TiO2/Fe2O3/CNTs magnetic photocatalyst: a fast and convenient synthesis and visible-light-driven photocatalytic degradation of tetracycline. Micro Nano Lett. 8(10), 749–752 (2013)

    Article  Google Scholar 

  188. Štrbac, D., Aggelopoulos, C.A., Štrbac, G., Dimitropoulos, M., Novaković, M., Ivetić, T., Yannopoulos, S.N.: Photocatalytic degradation of Naproxen and methylene blue: comparison between ZnO, TiO2 and their mixture. Process. Saf. Environ. Prot. 113, 174–183 (2018)

    Article  Google Scholar 

  189. Li, X., Liu, X., Lin, C., Zhang, H., Zhou, Z., Fan, G., Ma, J.: ‘Cobalt ferrite nanoparticles supported on drinking water treatment residuals: An efficient magnetic heterogeneous catalyst to activate peroxymonosulfate for the degradation of atrazine. Chem. Eng. J. 367, 208–218 (2019)

    Article  Google Scholar 

  190. Nasrollahzadeh, M., Bagherzadeh, M., Karimi, H.: Preparation, characterization and catalytic activity of CoFe2O4 nanoparticles as a magnetically recoverable catalyst for selective oxidation of benzyl alcohol to benzaldehyde and reduction of organic dyes. J. Colloid Interface Sci. 465, 271–278 (2016)

    Article  ADS  Google Scholar 

  191. Tongming, S., Shao, Q., Qin, Z., Guo, Z., Wu, Z.: Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8(3), 2253–2276 (2018)

    Article  Google Scholar 

  192. Selli, E., Chiarello, G.L., Quartarone, E., Mustarelli, P., Rossetti, I., Forni, L.: A photocatalytic water splitting device for separate hydrogen and oxygen evolution. ChemComm. 47, 5022–5024 (2007)

    Google Scholar 

  193. Osterloh, F.E., Parkinson, B.A.: Recent developments in solar water-splitting photocatalysis. MRS Bull. 36(1), 17–22 (2011)

    Article  ADS  Google Scholar 

  194. Sievi, G., Geburtig, D., Skeledzic, T., Bösmann, A., Preuster, P., Brummel, O., Waidhas, F., et al.: Towards an efficient liquid organic hydrogen carrier fuel cell concept. Energy Environ. Sci. 12(7), 2305–2314 (2019)

    Article  Google Scholar 

  195. Sigfusson, T.I.: Pathways to hydrogen as an energy carrier, Philos. Trans. Royal Soc.A: Math. Phys. Eng. Sci. 365(1853), 1025–1042 (2007)

    Google Scholar 

  196. Ravichandran, A.T., Srinivas, J., Karthick, R., Manikandan, A., Baykal, A.: Facile combustion synthesis, structural, morphological, optical and antibacterial studies of Bi1-xAlxFeO3 (0.0 ≤ x ≤ 0.15) nanoparticles. Ceram. Int. 44, 13247–13252 (2018)

    Article  Google Scholar 

  197. López, Y.O., Vázquez, H.M., Gutiérrez, J.S., Velderrain, V.G., Ortiz, A.L., Martínez, V.C.: Synthesis method effect of CoFe2O4 on its photocatalytic properties for H2 production from water and visible light. J. Nanomater. 2015 (2015)

  198. Scheffe, J.R., Allendorf, M.D., Coker, E.N., Jacobs, B.W., McDaniel, A.H., Weimer, A.W.: Hydrogen production via chemical looping redox cycles using atomic layer deposition-synthesized iron oxide and cobalt ferrites. Chem. Mater. 23(8), 2030–2038 (2011)

    Article  Google Scholar 

  199. Thomas, J., Thomas, N., Girgsdies, F., Beherns, M., Huang, X., Sudheesh, V.D., Sebastian, V.: Synthesis of cobalt ferrite nanoparticles by constant pH co-precipitation and their high catalytic activity in CO oxidation. New J. Chem. 41(15), 7356–7363 (2017)

    Article  Google Scholar 

  200. Scheffe, J.R., McDaniel, A.H., Allendorf, M.D., Weimer, A.W.: Kinetics and mechanism of solar-thermochemical H2 production by oxidation of a cobalt ferrite–zirconia composite. Energy Environ. Sci. 6(3), 963–973 (2013)

    Article  Google Scholar 

  201. Ali, I., Gupta, V.K.: Advances in water treatment by adsorption technology. Nat. Protoc. 1(6), 2661 (2006)

    Article  Google Scholar 

  202. Ali, I.: Water treatment by adsorption columns: evaluation at ground level. Sep. Purif. Rev. 43(3), 175–205 (2014)

    Article  Google Scholar 

  203. Jayalakshmi, R., Jeyanthi, J.: Simultaneous removal of binary dye from textile effluent using cobalt ferrite-alginate nanocomposite: Performance and mechanism. Microchem. J. 145, 791–800 (2019)

    Article  Google Scholar 

  204. Mehta, D., Mazumdar, S., Singh, S.K.: Magnetic adsorbents for the treatment of water/wastewater—a review. J.Water Process. Eng. 7, 244–265 (2015)

    Article  Google Scholar 

  205. Mahdavian, A.R., Mirrahimi, M.A.-S.: Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem. Eng. J. 159(1-3), 264–271 (2010)

    Article  Google Scholar 

  206. Ding, Z., Wang, W., Zhang, Y., Li, F., Liu, J.P.: Synthesis, characterization and adsorption capability for Congo red of CoFe2O4 ferrite nanoparticles. J. Alloys Compd. 640, 362–370 (2015)

    Article  Google Scholar 

  207. Ai, L., Li, M., Li, L.: Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics. J. Chem. Eng. Data. 56(8), 3475–3483 (2011)

    Article  Google Scholar 

  208. Yavari, S., Mahmodi, N.M., Teymouri, P., Shahmoradi, B., Maleki, A.: Cobalt ferrite nanoparticles: preparation, characterization and anionic dye removal capability. J. Taiwan Inst. Chem. Eng. 59, 320–329 (2016)

    Article  Google Scholar 

  209. Hassani, A., Çelikdağ, G., Eghbali, P., Sevim, M., Karaca, S., Metin, Ö.: Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite-reduced graphene oxide (CoFe2O4-rGO) nanocomposite for the removal of organic dyes from aqueous solution. Ultrason. Sonochem. 40, 841–852 (2018)

    Article  Google Scholar 

  210. Hosseini, S.M., Sohrabnejad, S., Nabiyouni, G., Jashni, E., Van der Bruggen, B., Ahmadi, A.: Magnetic cation exchange membrane incorporated with cobalt ferrite nanoparticles for chromium ions removal via electrodialysis. J. Membr. Sci. 583, 292–300 (2019)

    Article  Google Scholar 

  211. Badawy, A.A., Ibrahim, S.M., Essawy, H.A.: Enhancing the textile dye removal from aqueous solution using cobalt ferrite nanoparticles prepared in presence of fulvic acid. J. Inorg. Organomet. Polym. Mater. 1-16 (2019)

  212. Jegadeesan, G., Mondal, K., Lalvani, S.B.: Comparative study of selenite adsorption on carbon based adsorbents and activated alumina. Environ. Technol. 24(8), 1049–1059 (2003)

    Article  Google Scholar 

  213. Jain, R., Mathur, M., Sikarwar, S., Mittal, A.: Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manag. 85(4), 956–964 (2007)

    Article  Google Scholar 

  214. Wim de Vries, Paul F.A.M. Römkens, and Gudrun Schütze: Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals, Rev Environ Contam T, pp. 91-130. Springer, New York, NY (2007)

  215. Bolong, N., Ismail, A.F., Salim, M.R., Matsuura, T.: A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination. 239(1-3), 229–246 (2009)

    Article  Google Scholar 

  216. Toze, S.: Water reuse and health risks—real vs. perceived. Desalination. 187(1-3), 41–51 (2006)

    Article  Google Scholar 

  217. Li, P., He, X., Guo, W.: Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: a case study in Yan’an City on the Loess Plateau of northwest China. Hum. Ecol. Risk. Assess. 25(1-2), 11–31 (2019)

    Article  Google Scholar 

  218. Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., Sanganyado, E.: Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 636, 299–313 (2018)

    Article  ADS  Google Scholar 

  219. Böhlke, J.-K.: Groundwater recharge and agricultural contamination. Hydrogeol. J. 10(1), 153–179 (2002)

    Article  ADS  Google Scholar 

  220. McLaughlin, M.J., Parker, D.R., Clarke, J.M.: Metals and micronutrients–food safety issues. Field Crop Res. 60(1-2), 143–163 (1999)

    Article  Google Scholar 

  221. Paris, E.C., Malafatti, J.O.D., Musetti, H.C., Manzoli, A., Zenatti, A., Escote, M.T.: Faujasite zeolite decorated with cobalt ferrite nanoparticles for improving removal and reuse in Pb2+ ions adsorption. Chin. J. Chem. Eng. 28, 1884–1890 (2020)

    Article  Google Scholar 

  222. Thet, C.C., Thu Hlaing, T., Saw, K.M.M.M., Takaomi, K.: Cobalt ferrite adsorbentsfor the effective andefficient removalof arsenic. J. Myanmar Acad. Arts Sci. Vol. XVIII.No.2A (2020)

  223. Zhou, G., Wang, Y., Zhou, R., Wang, C., Jin, Y., Qiu, J., Hua, C., Cao, Y.: Synthesis of amino-functionalized bentonite/CoFe2O4@ MnO2 magnetic recoverable cwnanoparticles for aqueous Cd2+ removal. Sci. Total Environ. 682, 505–513 (2019)

    Article  ADS  Google Scholar 

  224. Chen, Y., Ruan, M., Jiang, Y.F., Cheng, S.G., Li, W.: The synthesis and thermal effect of CoFe2O4 nanoparticles. J. Alloys Compd. 493(1-2), L36–L38 (2010)

    Article  Google Scholar 

  225. Chiu, W.S., Radiman, S., Abd-Shukor, R., Abdullah, M.H., Khiew, P.S.: Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment. J. Alloys Compd. 459(1-2), 291–297 (2008)

    Article  Google Scholar 

  226. Eshraghi, M., Kameli, P.: Magnetic properties of CoFe2O4 nanoparticles prepared by thermal treatment of ball-milled precursors. Curr. Appl. Phys. 11(3), 476–481 (2011)

    Article  ADS  Google Scholar 

  227. Khan, S., Malik, A.: Environmental and health effects of textile industry wastewater. In Environmental deterioration and human health, pp. 55-71. Springer, Dordrecht (2014)

  228. Hassaan, M.A., El Nemr, A.: Health and environmental impacts of dyes: mini review. Am. J. Environ. Sci. Eng. 1(3), 64–67 (2017)

    Google Scholar 

  229. Chung, K.-T.: Azo dyes and human health: a review. J. Environ. Sci. Health, Part C. 34(4), 233–261 (2016)

    Article  Google Scholar 

  230. Josiane, A., Vendemiatti, S., Camparotto, N.G., Vidal, C., Cristale, J., de Moraes Agapito, E.V., Oliveira, Á.C., Rodrigues, E.A., Montagner, C.C., Umbuzeiro, G.A., Prediger, P.: New benzotriazoles generated during textile dyeing process: Synthesis, hazard, water occurrence and aquatic risk assessment. J. Hazard. Mater. 123732 (2020)

  231. Kim, K.N., Jung, H.-R., Lee, W.-J.: Hollow cobalt ferrite–polyaniline nanofibers as magnetically separable visible-light photocatalyst for photodegradation of methyl orange. J. Photochem. Photobiol. A: Chemistry. 321, 257–265 (2016)

    Article  Google Scholar 

  232. Qurrat-ul-Ain, S.K., Gul, Z., Khatoon, J., Shah, M.R., Hamid, I., Khan, I.A.T., Aslam, F.: Anionic azo dyes removal from water using amine-functionalized cobalt–iron oxide nanoparticles: a comparative time-dependent study and structural optimization towards the removal mechanism. RSC Adv. 10(2), 1021–1041 (2020)

    Article  ADS  Google Scholar 

  233. Godlyn Abraham, A., Manikandan, A., Manikandan, E., Vadivel, S., Jaganathan, S.K., Baykal, A., Sri Renganathan, P.: Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites. J. Magn. Magn. Mater. 452, 380–388 (2018)

    Article  ADS  Google Scholar 

  234. Dou, R., Cheng, H., Ma, J., Komarneni, S.: Manganese doped magnetic cobalt ferrite nanoparticles for dye degradation via a novel heterogeneous chemical catalysis. Mater. Chem. Phys. 240, 122181 (2020)

    Article  Google Scholar 

  235. Yongsheng, F., Chen, H., Sun, X., Wang, X.: Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Appl. Catal.B: Environmental. 111, 280–287 (2012)

    Google Scholar 

  236. Rouhani, A.R., Esmaeil-Khanian, A.H., Davar, F., Hasani, S.: The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel autocombustion method. Int. J. Appl. Ceram. Technol. 15(3), 758–765 (2018)

    Article  Google Scholar 

  237. Jiecai, F., Zhang, J., Peng, Y., Zhao, J., Tan, G., Mellors, N.J., Xie, E., Han, W.: Unique magnetic properties and magnetization reversal process of CoFe2O4 nanotubes fabricated by electrospinning. Nanoscale. 4(13), 3932–3936 (2012)

    Article  ADS  Google Scholar 

  238. He, Y., Dai, C., Zhou, X.: Magnetic cobalt ferrite composite as an efficient catalyst for photocatalytic oxidation of carbamazepine. Environ. Sci. Pollut. Res. 24(2), 2065–2074 (2017)

    Article  Google Scholar 

  239. Jaafarzadeh, N., Ghanbari, F., Zahedi, A.: Coupling electrooxidation and Oxone for degradation of 2, 4-Dichlorophenoxyacetic acid (2, 4-D) from aqueous solutions. J.Water Process. Eng. 22, 203–209 (2018)

    Article  Google Scholar 

  240. Ratkovski, G.P., do Nascimento, K.T.O., Pedro, G.C., Ratkovski, D.R., Gorza, F.D.S., da Silva, R.J., Maciel, B.G., Mojica-Sánchez, L.C., de Melo, C.P.: Spinel cobalt ferrite nanoparticles for sensing phosphate ions in aqueous media and biological samples. Langmuir. 36(11), 2920–2929 (2020)

    Article  Google Scholar 

  241. Zhao, Y., Cao, B., Lin, Z., Xintai, S.: Synthesis of CoFe2O4/C nano-catalyst with excellent performance by molten salt method and its application in 4-nitrophenol reduction. Environ. Pollut. 254, 112961 (2019)

    Article  Google Scholar 

  242. Li, J., Xu, M., Yao, G., Lai, B.: Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: kinetic, degradation intermediates, and toxicity evaluation. Chem. Eng. J. 348, 1012–1024 (2018)

    Article  Google Scholar 

  243. Tan, C., Gao, N., Dafang, F., Deng, J., Lin, D.: Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Sep. Purif. Technol. 175, 47–57 (2017)

    Article  Google Scholar 

  244. Rad, L.R., Ghazani, B.F., Irani, M., Sayyafan, M.S., Haririan, I.: Comparison study of phenol degradation using cobalt ferrite nanoparticles synthesized by hydrothermal and microwave methods. Desalination Water Treat. 56(12), 3393–3402 (2015)

    Google Scholar 

  245. Zhang, Q., Li, C., Zhong, S., Peng, X., Zhang, S.: Disposal of phenol waste water by CoFe2O4&AA activated peroxydisulfate. Environ. Technol. 1–9 (2019)

  246. Chandrasekaran, S., Bowen, C., Zhang, P., Li, Z., Yuan, Q., Ren, X., Deng, L.: Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting. J. Mater. Chem. A. 6(24), 11078–11104 (2018)

    Article  Google Scholar 

  247. Durga Prasad, P., Hemalatha, J.: Enhanced magnetic properties of highly crystalline cobalt ferrite fibers and their application as gas sensors. J. Magn. Magn. Mater. 484, 225–233 (2019)

    Article  ADS  Google Scholar 

  248. Singh, S., Singh, A., Yadav, B.C., Tandon, P.: Synthesis, characterization, magnetic measurements and liquefied petroleum gas sensing properties of nanostructured cobalt ferrite and ferric oxide. Mater. Sci. Semicond. Process. 23, 122–135 (2014)

    Article  Google Scholar 

  249. Jauhar, S., Kaur, J., Goyal, A., Singhal, S.: Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Adv. 6(100), 97694–97719 (2016)

    Article  ADS  Google Scholar 

  250. Ajroudi, L., Madigou, V., Villain, S., Mliki, N., Leroux, C., Potentiality of Cobalt Nanoferrites for Gas Sensors: Sens. Lett. 9(6), 2397–2400 (2011)

    Article  Google Scholar 

  251. Meshkani, F., Rezaei, M.: High temperature water gas shift reaction over promoted iron based catalysts prepared by pyrolysis method, Int. J. Hydrog. Energy. 39(29), 16318–16328 (2014)

    Article  Google Scholar 

  252. El-Shahawy, A.A.G., Abo El-Ela, F.I., Mohamed, N.A., Eldine, Z.E., El Rouby, W.M.A.: Synthesis and evaluation of layered double hydroxide/doxycycline and cobalt ferrite/chitosan nanohybrid efficacy on gram positive and gram negative bacteria. Mater. Sci. Eng. C. 91, 361–371 (2018)

    Article  Google Scholar 

  253. Jeyavani, V., Pawar, S., Dadwal, A., Joy, P.A., Mukherjee, S.P.: Size-controlled Cobalt Ferrite Nanocrystals: Magnetically separable Reusable Nanocatalysts for Selective Oxidation of Styrene. Chemistry Select. 4(21), 6524–6531 (2019)

    Google Scholar 

  254. Xu, C., Lu, Z.: Iminophenyl oxazolinylphenylamine for enantioselective cobalt-catalyzed hydrosilylation of aryl ketones. Org. Lett. 18(18), 4658–4661 (2016)

    Article  Google Scholar 

  255. Moghaddam, F.M., Pourkaveh, R., Ahangarpour, M.: Cobalt-copper ferrite nanoparticles catalyzed click reaction at room-temperature: green access to 1, 2, 3-triazole derivatives. Chemistry Select. 3, 2586–2593 (2018)

    Google Scholar 

  256. Kiyokawa, T., Ikenaga, N.: Oxidative dehydrogenation of but-1-ene with lattice oxygen in ferrite catalysts. Appl. Catal.A: General. 536, 97–103 (2017)

    Article  Google Scholar 

  257. Zamani-Ranjbar-Garmroodi, B., Nasseri, M.A., Allahresani, A., Hemmat, K.: Application of immobilized sulfonic acid on the cobalt ferrite magnetic nanocatalyst (CoFe2O4@ SiO2@ SO3H) in the synthesis of spirooxindoles. Res. Chem. Intermed. 45(11), 5665–5680 (2019)

    Article  Google Scholar 

  258. Sangmanee, M., Maensiri, S.: Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl. Phys. A Mater. Sci. Process. 97(1), 167–177 (2009)

    Article  ADS  Google Scholar 

  259. Kaya, M., Zahmakiran, M., Özkar, S., Volkan, M.: Copper (0) nanoparticles supported on silica-coated cobalt ferrite magnetic particles: cost effective catalyst in the hydrolysis of ammonia-borane with an exceptional reusability performance. ACS Appl. Mater. Interfaces. 4(8), 3866–3873 (2012)

    Article  Google Scholar 

  260. Li, K., Xie, L., Hao, Z., Xiao, M.: Effective removal of Hg (II) ion from aqueous solutions by thiol functionalized cobalt ferrite magnetic mesoporous silica composite. J. Dispers. Sci. Technol. 41(4), 503–509 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Manikandan or Belina Xavier.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinosha, P.A., Manikandan, A., Preetha, A.C. et al. Review on Recent Advances of Synthesis, Magnetic Properties, and Water Treatment Applications of Cobalt Ferrite Nanoparticles and Nanocomposites. J Supercond Nov Magn 34, 995–1018 (2021). https://doi.org/10.1007/s10948-021-05854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05854-6

Keywords

Navigation