Skip to main content
Log in

Selenium-Containing Nanostructures: Synthesis, Properties, and Agrochemical Aspects of Application (Review)

  • REVIEWS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Selenium is an essential trace mineral for plants. It is required for redox processes in cells, the synthesis of necessary compounds, and resistance against stresses of various nature. Interest in the use of nanoscale selenium for plant treatment is now increasing due to both a deficiency of selenium in soils and the toxicity of selenium compounds. This review discusses in detail the approaches for the synthesis of selenium nanoparticles: physical and chemical methods, as well as the use of living organisms (plants, bacteria, and fungi). The latter approach to nanoparticle synthesis has been gaining popularity in recent years due to the variety of reducing enzymes in organisms. In general, the effect of nanoselenium on plants depends on the size of nanoparticles and on the concentration applied. Available research demonstrates the positive effect of nanoselenium on plant viability and the resistance against stress. It is assumed that this effect is associated with (i) an increase in the intensity of photosynthesis, (ii) a change in the fatty acid profile of lipids, (iii) a decrease in lipid peroxidation, (iv) an increase in the content of essential organic compounds in plant tissues, as well as (v) an increase in the activity of antioxidant enzymes as a result of the influence of selenium nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. L. Knunyants, Chemical Encyclopedy (Sov. Ektsiklopediya, Moscow, 1988), Vols. 1, 2 [in Russian].

    Google Scholar 

  2. K. Pyrzynska, Mikrochim. Acta 140, 55 (2002).

    Article  CAS  Google Scholar 

  3. P. Atkins, T. Overton, J. Rourke, et al., Inorganic Chemistry, 5th ed. (Prentice Hall, Oxford, UK, 2010).

    Google Scholar 

  4. M. Zhu, G. Niu, and J. Tang, J. Mater. Chem. C 7, 2199 (2019). https://doi.org/10.1039/C8TC05873C

    Article  CAS  Google Scholar 

  5. V. A. Vikhreva, A. A. Blinokhvatov, and T. V. Kleimenova, Selenium in Plant Life (RIO PGSKhA, Penza, 2012) [in Russian].

  6. P. J. White, Biochim. Biophys. Acta 1862, 2333 (2018). https://doi.org/10.1016/j.bbagen.2018.05.006

    Article  CAS  Google Scholar 

  7. Yu. M. Kulagina and I. F. Golovatskaya, Vestn. TGU, Biol., No. 2 (14), 56 (2011).

  8. M. Gupta and S. Gupta, Front. Plant Sci. 11, 2074 (2017). https://doi.org/10.3389/fpls.2016.02074

    Article  Google Scholar 

  9. R. C. Trippe and E. A. H. Pilon-Smits, J. Hazard. Mater. B 404, 124178 (2021). https://doi.org/10.1016/j.jhazmat.2020.124178

    Article  CAS  Google Scholar 

  10. R. Feng, L. Wang, J. Yang, et al., J. Hazard. Mater. 15, 402 (2021). https://doi.org/10.1016/j.jhazmat.2020.123570

    Article  CAS  Google Scholar 

  11. T. A. Nessel and V. Gupta, Selenium (StatPearls, San Francisco, 2021).

    Google Scholar 

  12. D. van Hoewyk, Ann. Bot. 112, 965 (2013). https://doi.org/10.1093/aob/mct163

    Article  CAS  Google Scholar 

  13. C. M. Lanctot, T. Cresswell, P. D. Callaghan, et al., Environ. Sci. Technol. 51, 5764 (2017). https://doi.org/10.1021/acs.est.7b00300

    Article  CAS  Google Scholar 

  14. J. Li, B. Shen, S. Nie, et al., Carbohydr. Polym. 206, 163 (2019). https://doi.org/10.1016/j.carbpol.2018.10.088

    Article  CAS  Google Scholar 

  15. C. J. Aslam, K. B. Harbit, and R. C. Huaker, Plant Cell. Environ. 13, 773 (1990). https://doi.org/10.1111/j.1365-3040.1990.tb01093.x

    Article  CAS  Google Scholar 

  16. Z. Kolbert, Á. Molnár, G. Feigl, et al., J. Plant Physiol. 232, 291 (2019). https://doi.org/10.1016/j.jplph.2018.11.003

    Article  CAS  Google Scholar 

  17. I. I. Seregina and T. N. Nilovskaya, Agrokhimiya, No. 10, 76 (2002).

  18. E. A. H. Pilon-Smits, Plants (Basel) 8 (7), pii: E197 (2019). https://doi.org/10.3390/plants8070197

    Article  CAS  Google Scholar 

  19. P. J. White, Ann. Bot. 117, 217 (2016). https://doi.org/10.1093/aob/mcv180

    Article  CAS  Google Scholar 

  20. L. W. Lima, E. A. H. Pilon-Smits, and M. Schiavon, Biochim. Biophys. Acta 1862, 2343 (2018). https://doi.org/10.1016/j.bbagen.2018.03.028

    Article  CAS  Google Scholar 

  21. M. Schiavon and E. A. Pilon-Smits, New Phytol. 213, 1582 (2017). https://doi.org/10.1111/nph.14378

    Article  CAS  Google Scholar 

  22. Š. Mechora, Plants (Basel) 8 (8), pii: E262 (2019). https://doi.org/10.3390/plants8080262

    Article  CAS  Google Scholar 

  23. M. Sager, Pure Appl. Chem. 78, 111 (2006).

    Article  CAS  Google Scholar 

  24. H. Ullah, G. Liu, B. Yousaf, et al., Environ Geochem. Health 41, 1003 (2019). https://doi.org/10.1007/s10653-018-0195-8

    Article  CAS  Google Scholar 

  25. N. Terry, A. M. Zayed, M. P. de Souza, et al., Ann. Rev. Plant Physiol. 51, 401 (2000). https://doi.org/10.1146/annurev.arplant.51.1.401

    Article  CAS  Google Scholar 

  26. A. E. Pobilat and E. I. Voloshin, Vestn. KrasGAU, No. 11, 98 (2020). https://doi.org/10.36718/1819-4036-2020-11-98-105

  27. L. Winkel, B. Vriens, G. D. Jones, et al., Nutrients 7, 4199 (2015). https://doi.org/10.3390/nu7064199

    Article  CAS  Google Scholar 

  28. B. A. Zachara and A. Pilecki, Environ. Health Perspect. 10, 1043 (2000). https://doi.org/10.1289/ehp.001081043

    Article  Google Scholar 

  29. B. Dębski, B. Zachara, and W. Wąsowicz, Folia Univ. Agric. Stetin. Zootech. 224, 31 (2001).

    Google Scholar 

  30. R. Newman, N. Waterl, Y. Moon, et al., Plant Foods Hum. Nutr. 74, 449 (2019). https://doi.org/10.1007/s11130-019-00769-z

    Article  CAS  Google Scholar 

  31. P. F. Surai and I. I. Kochish, Anim. Health Res. Rev. 23, 1 (2020). https://doi.org/10.1017/S1466252320000183

    Article  Google Scholar 

  32. B. Hawrylak-Nowak, Plant Growth Reg. 70, 149 (2013). https://doi.org/10.1007/s10725-013-9788-5

    Article  CAS  Google Scholar 

  33. G. Moreno-Martin, J. Sanz-Laluze, M. E. León-Gonzalez, et al., Anal. Chim. Acta, No. 12, 72 (2019). https://doi.org/10.1016/j.aca.2019.06.061

  34. Y. Wang, X. Yan, and L. Fu, Int. J. Nanomed. 8, 4007 (2013). https://doi.org/10.2147/IJN.S43691

    Article  CAS  Google Scholar 

  35. S. Yu, W. Zhang, W. Liu, et al., Nanotechnology 26, 145703 (2015). https://doi.org/10.2147/IJN.S122666

    Article  Google Scholar 

  36. O. Zsiros, V. Nagy, Á. Párducz, et al., Photosynth. Res. 139, 449 (2019). https://doi.org/10.1007/s11120-018-0599-4

    Article  CAS  Google Scholar 

  37. T. C. Stadtman, Ann. Rev. Biochem. 59, 111 (1990). https://doi.org/10.1146/annurev.bi.59.070190.000551

    Article  CAS  Google Scholar 

  38. G. Guisbiers, H. H. Lara, R. Mendoza-Cruz, et al., Nanomedicine 13, 1095 (2017). https://doi.org/10.1016/j.nano.2016.10.011

    Article  CAS  Google Scholar 

  39. G. Guisbiers, Q. Wang, E. Khachatryan, et al., Laser Phys. Lett. 12, 016003 (2014). https://doi.org/10.1088/1612-2011/12/1/016003

    Article  CAS  Google Scholar 

  40. N. A. Zulina, M. I. Fokina, E. G. Cherkashina, et al., Nauch.-Tekh. Vestn. Inform. Tekhnol. Mekh. Opt. 18, 416 (2018). https://doi.org/10.17586/2226-1494-2018-18-3-416-420

    Article  Google Scholar 

  41. J. Y. Hou, S. Y. Ai, and W. J. Shi, Chem. Res. Chin. Univ. 27, 158 (2011).

    CAS  Google Scholar 

  42. M. Panahi-Kalamuei, M. Salavati-Niasari, and S. M. Hosseinpour-Mashkani, J. Alloys Compd. 617, 627 (2014). https://doi.org/10.1016/j.jallcom.2014.07.174

    Article  CAS  Google Scholar 

  43. G. Xi, K. Xiong, Q. Zhao, et al., Cryst. Growth Des. 6, 577 (2006). https://doi.org/10.1021/cg050444c

    Article  CAS  Google Scholar 

  44. A. V. Papkina, A. I. Perfileva, M. A. Zhivetev, G. B. Borovskiy, I. A. Graskova, M. V. Lesnichaya, I. V. Klimenkov, B. G. Sukhov, and B. A. Trofimov, Dokl. Biol. Sci. 461, 89 (2015). https://doi.org/10.1134/S001249661501010X

    Article  CAS  Google Scholar 

  45. A. I. Perfileva, O. A. Nozhkina, I. A. Graskova, A. V. Sidorov, M. V. Lesnichaya, G. P. Aleksandrova, G. Dolmaa, I. V. Klimenkov, and B. G. Sukhov, Russ. Chem. Bull. 67, 157 (2018). https://doi.org/10.1007/s11172-018-2052-4

    Article  CAS  Google Scholar 

  46. S. V. Valueva, A. I. Kipper, L. N. Borovikova, and N. A. Matveeva, Russ. J. Phys. Chem. A 84, 2110 (2010).

    Article  CAS  Google Scholar 

  47. V. V. Kopeikin, S. V. Valueva, A. I. Kipper, L. N. Boro-vikova, and A. P. Filippov, Polymer Sci., Ser. A 45, 374 (2003).

    Google Scholar 

  48. C. Dwivedi, C. P. Shah, K. M. Singh, et al., J. Nanotechnol. 2011, 651971 (2011). https://doi.org/10.1155/2011/651971

    Article  CAS  Google Scholar 

  49. T. E. Sukhanova, S. V. Valueva, M. E. Vylegzhanina, G. N. Matveeva, A. A. Kutin, M. P. Sokolova, A. Ya. Volkov, P. G. Ulyanov, and V. K. Adamchuk, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 8, 484 (2014).

    Article  CAS  Google Scholar 

  50. S. V. Valueva and L. N. Borovikova, Russ. J. Phys. Chem. A 93, 129 (2019).

    Article  CAS  Google Scholar 

  51. A. J. Kora, IET Nanobiotechnol. 12, 658 (2018). https://doi.org/10.1049/iet-nbt.2017.0310

    Article  Google Scholar 

  52. S. Shoeibi, P. Mozdziak, and A. Golkar-Narenji, Top. Curr. Chem. (Cham) 375 (6), 88 (2017). https://doi.org/10.1007/s41061-017-0176-x

    Article  CAS  Google Scholar 

  53. A. Husen and K. S. Siddiqi, J. Nanobiotechnol. 12, 28 (2014).

  54. C. Mellinas, A. Jiménez, and M. D. C. Garrigós, Molecules 24 (22), pii: E4048 (2019). https://doi.org/10.3390/molecules24224048

    Article  CAS  Google Scholar 

  55. M. Yazhiniprabha and B. Vaseeharan, Mater. Sci. Eng. C 103, 109763 (2019). https://doi.org/10.1016/j.msec.2019.109763

    Article  CAS  Google Scholar 

  56. P. Sowndarya, G. Ramkumar, and M. S. Shivakumar, Artif. Cell. Nanomed. Biotechnol. 45, 1490 (2017). https://doi.org/10.1080/21691401.2016.1252383

    Article  CAS  Google Scholar 

  57. D. Cui, T. Liang, L. Sun, et al., Pharm. Biol. 56, 528 (2018). https://doi.org/10.1080/13880209.2018.1510974

    Article  CAS  Google Scholar 

  58. W. Zhang, J. Zhang, D. Ding, et al., Artif. Cell. Nanomed. Biotechnol. 46, 1463 (2018). https://doi.org/10.1080/21691401.2017.1373657

    Article  CAS  Google Scholar 

  59. G. Sharma, A. R. Sharma, R. Bhavesh, et al., Molecules 19, 2761 (2014). https://doi.org/10.3390/molecules19032761

    Article  CAS  Google Scholar 

  60. K. S. Prasad, H. Patel, T. Patel, et al., Colloids Surf., B 103, 261 (2013). https://doi.org/10.1016/j.colsurfb.2012.10.029

    Article  CAS  Google Scholar 

  61. L. Gunti, R. S. Dass, and N. K. Kalagatur, Front Microbiol. 10, 931 (2019). https://doi.org/10.3389/fmicb.2019.00931

    Article  Google Scholar 

  62. H. S. Abbas, D. H. Abou Baker, and E. A. Ahmed, Arch. Microbiol. 203, 523 (2020). https://doi.org/10.1007/s00203-020-02042-3

    Article  CAS  Google Scholar 

  63. X. Y. Men, W. G. Xu, X. Zhu, et al., Zhong Yao Cai 32, 1891 (2009).

    CAS  Google Scholar 

  64. Y. Meng, Y. Zhang, N. Jia, et al., Int. J. Biol. Macromol. B 118, 1438 (2018). https://doi.org/10.1016/j.ijbiomac.2018.06.153

    Article  CAS  Google Scholar 

  65. G. M. Khiralla and B. A. El-Deeb, LWT-Food Sci. Technol. 63, 1001 (2015). https://doi.org/10.1016/j.lwt.2015.03.086

    Article  CAS  Google Scholar 

  66. F. M. Mosallam, G. S. El-Sayyad, R. M. Fathy, et al., Microbiol. Pathog. 122, 108 (2018). https://doi.org/10.1016/j.micpath.2018.06.013

    Article  CAS  Google Scholar 

  67. O. M. Tsivileva and A. I. Perfileva, Curr. Nutr. Food Sci. 13 (2), 82 (2017). https://doi.org/10.2174/1573401313666170117144547

    Article  CAS  Google Scholar 

  68. X. Liang, M. A. M. Perez, K. C. Nwoko, et al., Appl. Microbiol. Biotechnol. 103, 7241 (2019). https://doi.org/10.1007/s00253-019-09995-6

    Article  CAS  Google Scholar 

  69. R. Álvarez-Fernéz García, M. Corte-Rodríguez, M. Macke, et al., Analyst 145, 1457 (2020). https://doi.org/10.1039/c9an01565e

    Article  CAS  Google Scholar 

  70. S. Faramarzi, Y. Anzabi, and H. Jafarizadeh-Malmiri, Arch. Microbiol. 202, 1203 (2020). https://doi.org/10.1007/s00203-020-01831-0

    Article  CAS  Google Scholar 

  71. F. Asghari-Paskiabi, M. Imani, H. Rafii-Tabar, et al., Biochem. Biophys. Res. Commun. 516, 1078 (2019). https://doi.org/10.1016/j.bbrc.2019.07.007

    Article  CAS  Google Scholar 

  72. M. Rasouli, IET Nanobiotechnol. 13, 214 (2019). https://doi.org/10.1049/iet-nbt.2018.5187

    Article  Google Scholar 

  73. E. A. Loshchinina, E. P. Vetchinkina, M. A. Kupryashina, et al., J. Biosci. Bioeng. 126, 44 (2018). https://doi.org/10.1016/j.jbiosc.2018.02.002

    Article  CAS  Google Scholar 

  74. V. R. Ranjitha and V. R. Ravishankar, Pharm. Nanotechnol. 6, 61 (2018). https://doi.org/10.2174/2211738505666171113141010

    Article  CAS  Google Scholar 

  75. F. Elahian, S. Reiisi, A. Shahidi, et al., Nanomedicine 13, 853 (2017). https://doi.org/10.1016/j.nano.2016.10.009

    Article  CAS  Google Scholar 

  76. A. H. Hashem, A. M. A. Khalil, A. M. Reyad, et al., Biol. Trace Elem. Res. (2021). https://doi.org/10.1007/s12011-020-02506-z

  77. C. E. Rosenfeld, M. C. Sabuda, M. A. G. Hinkle, et al., Environ Sci. Technol. 54, 3570 (2020). https://doi.org/10.1021/acs.est.9b06022

    Article  CAS  Google Scholar 

  78. S. Chakraborty, E. R. Rene, and P. N. L. Lens, J. Microbiol. 57, 738 (2019). https://doi.org/10.1007/s12275-019-9042-6

    Article  CAS  Google Scholar 

  79. S. A. Wadhwani, U. U. Shedbalkar, R. Singh, et al., Appl. Microbiol. Biotechnol. 100, 2555 (2016). https://doi.org/10.1007/s00253-016-7300-7

    Article  CAS  Google Scholar 

  80. J. Zhang, Y. Wang, Z. Shao, et al., J. Environ. Sci. (Chin.) 77, 238 (2019). https://doi.org/10.1016/j.jes.2018.08.002

    Article  Google Scholar 

  81. T. W. Ni, L. C. Staicu, R. S. Nemeth, et al., Nanoscale 7, 17320 (2015). https://doi.org/10.1039/c5nr04097c

    Article  CAS  Google Scholar 

  82. M. Bajaj, S. Schmidt, and J. Winter, Microb. Cell Fact. 11, 1 (2012).

    Article  Google Scholar 

  83. A. Presentato, E. Piacenza, M. Anikovskiy, et al., N. Biotechnol. 41, 1 (2018). https://doi.org/10.1016/j.nbt.2017.11.002

    Article  CAS  Google Scholar 

  84. A. V. Tugarova, P. V. Mamchenkova, Y. A. Dyatlova, et al., Spectrochim. Acta, Part A 192, 458 (2018). https://doi.org/10.1016/j.saa.2017.11.050

    Article  CAS  Google Scholar 

  85. Y. Tan, Y. Wang, Y. Wang, et al., J. Hazard. Mater. 359, 129 (2018). https://doi.org/10.1016/j.jhazmat.2018.07.014

    Article  CAS  Google Scholar 

  86. P. Bao, K. Q. Xiao, H. J. Wang, et al., Sci. Rep. 6, 34054 (2016). https://doi.org/10.1038/srep34054

    Article  CAS  Google Scholar 

  87. L. Che, W. Xu, J. Zhan, et al., Curr. Microbiol. 76, 78 (2019). https://doi.org/10.1007/s00284-018-1587-9

    Article  CAS  Google Scholar 

  88. Y. Tan, R. Yao, R. Wang, et al., Microbiol. Cell Fact. 15, 157 (2016). https://doi.org/10.1186/s12934-016-0554-z

    Article  CAS  Google Scholar 

  89. X. Wang, D. Zhang, X. Pan, et al., Chemosphere 170, 266 (2017). https://doi.org/10.1016/j.chemosphere.2016.12.020

    Article  CAS  Google Scholar 

  90. L. Abo Kura and I. E. Stanishevskaya, Vestn. Nauch. Konf., No. 8-1 (48), 8 (2019).

  91. Z. O. Ardebili, N. O. Ardebili, S. Jalili, et al., Turk. J. Bot. 39, 401 (2015). https://doi.org/10.3906/bot-1404-20

    Article  CAS  Google Scholar 

  92. C. Jiang, C. Zu, J. Shen, et al., Acta Soc. Bot. Pol. 84, 71 (2015). https://doi.org/10.5586/asbp.2015.006

    Article  CAS  Google Scholar 

  93. H. A. Hussein, O. M. Darwesh, B. B. Mekki, et al., Biotechnol. Rep. (Amsterdam) 12 (24), 1 (2019). https://doi.org/10.1016/j.btre.2019.e00377

    Article  Google Scholar 

  94. T. Feng, S. Chen, D. Gao, et al., Photosynthetica 53, 609 (2015). https://doi.org/10.1007/s11099-015-0118-1

    Article  CAS  Google Scholar 

  95. A. Babajani, A. Iranbakhsh, Z. O. Ardebili, and B. Eslami, Environ. Sci. Pollut. Res. Int. 26, 24430 (2019). https://doi.org/10.1007/s11356-019-05676-z

    Article  CAS  Google Scholar 

  96. Y. Q. Wang, L. N. Zhu, K. Li, et al., Huan Jing Ke Xue 40, 4654 (2019). https://doi.org/10.13227/j.hjkx.201904048

    Article  Google Scholar 

  97. S. Sotoodehnia-Korani, A. Iranbakhsh, M. Ebadi, et al., Environ. Pollut. B 265, 114727 (2020). https://doi.org/10.1016/j.envpol.2020.114727

    Article  CAS  Google Scholar 

  98. H. A. Hussein, O. M. Darwesh, and B. B. Mekki, Biocatal. Agric. Biotechnol. 18, 101080 (2019). https://doi.org/10.1016/j.bcab.2019.101080

    Article  Google Scholar 

  99. M. C. Morales-Espinoza, G. Cadenas-Pliego, M. Pérez-Alvarez, et al., Molecules 24 (17), pii: E3030 (2019). https://doi.org/10.3390/molecules24173030

    Article  CAS  Google Scholar 

  100. T. Quiterio-Gutiérrez, H. Ortega-Ortiz, G. Cadenas-Pliego, et al., Int. J. Mol. Sci. 20 (8), pii: E1950 (2019). https://doi.org/10.3390/ijms20081950

    Article  CAS  Google Scholar 

  101. S. M. Zahedi, M. Abdelrahman, M. S. Hosseini, et al., Environ. Pollut. 253, 246 (2019). https://doi.org/10.1016/j.envpol.2019.04.078

    Article  CAS  Google Scholar 

  102. Zh. V. Udalova, G. Folmanis, F. Khasanov, and S. V. Zinovieva, Dokl. Biochem. Biophys. 63, 264 (2018). https://doi.org/10.1134/S1607672918050095

    Article  Google Scholar 

  103. S. M. Joshi, S. de Britto, and S. Jogaiah, J. Biotechnol. 325, 196 (2021). https://doi.org/10.1016/j.jbiotec.2020.10.023

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed within the framework of project “Study of the molecular mechanisms of physiological processes and allelopathy in plant-microbial interactions” no. 0277-2021-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Perfileva.

Ethics declarations

I declare that I have no conflicts of interest.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perfileva, A.I. Selenium-Containing Nanostructures: Synthesis, Properties, and Agrochemical Aspects of Application (Review). Nanotechnol Russia 17, 165–174 (2022). https://doi.org/10.1134/S263516762202015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263516762202015X

Navigation