Skip to main content
Log in

The Evolution of Ideas on the Biological Role of 5-methylcytosine Oxidative Derivatives in the Mammalian Genome

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

In this review, we summarize the data on 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine— cytosine modifications which are produced by TET-mediated oxidation of 5-methylcytosine in DNA. We show the biochemistry of modified cytosine, as well as methods for its global and location analysis. We also highlight the milestones in the evolution of ideas on the biological role of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine in the mammalian genome from their discovery in 2009 to the present time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kriaucionis, S. and Heintz, N., The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain, Science, 2009, vol. 324, pp. 929–930. doi 10.1126/science.1169786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tahiliani, M., Koh, K.P., Shen, Y., et al., Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, 2009, vol. 324, pp. 930–935. doi 10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. He, Y.F., Li, B.Z., Li, Z., et al., Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA, Science, 2011, vol. 333, pp. 1303–1307. doi 10.1126/science.1210944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maiti, A. and Drohat, A.C., Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: Potential implications for active demethylation of CpG sites, J. Biol. Chem., 2011, vol. 286, no. 41, pp. 35334–35338. doi 10.1074/jbc.C111.284620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Efimova, O.A., Pendina, A.A., Tikhonov, A.V., et al., DNA methylation—a major mechanism of human genome reprogramming and regulation, Med. Genet., 2012, vol. 11, no. 4, pp. 10–18.

    CAS  Google Scholar 

  6. Kishikawa, S., Murata, T., Ugai, H., et al., Control elements of Dnmt1 gene are regulated in cell-cycle dependent manner, Nucleic Acid Res. Suppl., 2003, vol. 3, pp. 307–309. doi 10.1093/nass/3.1.307

    Article  CAS  Google Scholar 

  7. Ko, Y.G., Nishino, K., Hattori, N., et al., Stage-by-stage change in DNA methylation status of Dnmt1 locus during mouse early development, J. Biol. Chem., 2005, vol. 280, no. 10, pp. 9627–9634. doi 10.1074/jbc.M413822200

    Article  CAS  PubMed  Google Scholar 

  8. Trasler, J.M., Alcivar, A.A., Hake, L.E., et al., DNA methyltransferase is developmentally expressed in replicating and non-replicating male germ cells, Nucleic Acid Res., 1992, vol. 20, no. 10, pp. 2541–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mertineit, C., Yoder, J.A., Taketo, T., et al., Sex-specific exons control DNA methyltransferase in mammalian germ cells, Development, 1998, vol. 125, pp. 889–897.

    CAS  PubMed  Google Scholar 

  10. Chen, T. and Li, E., Establishment and maintenance of DNA methylation patterns in mammals, Curr. Top. Microbiol. Immunol., 2006, vol. 301, pp. 179–201.

    CAS  PubMed  Google Scholar 

  11. Arand, J., Spieler, D., Karius, T., et al., In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases, PLoS Genet., 2012, vol. 8, no. 6, p. e1002750. doi 10.1371/journal.pgen.1002750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramsahoye, B.H., Biniszkiewicz, D., Lyko, F., et al., Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 10, pp. 5237–5242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shirane, K., Toh, H., Kobayashi, H., et al., Mouse oocyte methylomes at base resolution reveal genomewide accumulation of non-CpG methylation and role of DNA methyltransferases, PLoS Genet., 2013, vol. 9, p. e1003439. doi 10.1371/journal.pgen.1003439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watanabe, D., Suetake, I., Tada, T., et al., Stage-and cellspecific expression of Dnmt3a and Dnmt3b during embryogenesis, Mech. Dev., 2002, vol. 118, nos. 1–2, pp. 187–190.

    Article  CAS  PubMed  Google Scholar 

  15. Okano, M., Bell, D.W., Haber, D.A., and Li, E., DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development, Cell, 1999, vol. 99, pp. 247–257.

    Article  CAS  PubMed  Google Scholar 

  16. Kato, Y., Kaneda, M., Hata, K., et al., Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse, Hum. Mol. Genet., 2007, vol. 16, pp. 2272–2280. doi 10.1093/hmg/ddm179

    Article  CAS  PubMed  Google Scholar 

  17. Bourc’his, D., Xu, G.L., Lin, C.S., et al., Dnmt3L and the establishment of maternal genomic imprints, Science, 2001, vol. 294, no. 5551, pp. 2536–2539. doi 10.1126/science.1065848

    Article  PubMed  Google Scholar 

  18. Hata, K., Okano, M., Lei, H., and Li, E., Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice, Development, 2002, vol. 129, no. 8, pp. 1983–1993.

    CAS  PubMed  Google Scholar 

  19. Turek-Plewa, J. and Jagodzinski, P.P., The role of mammalian DNA methyltransferases in the regulation of gene expression, Cell. Mol. Biol. Lett., 2005, vol. 10, pp. 631–647.

    CAS  PubMed  Google Scholar 

  20. Goll, M.G., Kirpekar, F., Maggert, K.A., et al., Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2, Science, 2006, vol. 311, pp. 395–398. doi 10.1126/science.1120976

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, H. and Chen, T., Tet family of 5-methylcytosine dioxygenases in mammalian development, J. Hum. Genet., 2013, vol. 58, no. 7, pp. 421–427. doi 10.1038/jhg.2013.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baccarelli, A. and Bollati, V., Epigenetics and environmental chemicals, Curr. Opin. Pediatr., 2009, vol. 21, no. 2, pp. 243–251.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dickson, K.M., Gustafson, C.B., Young, J.I., et al., Ascorbate-induced generation of 5-hydroxymethylcytosine is unaffected by varying levels of iron and 2-oxoglutarate, Biochem. Biophys. Res. Commun., 2013, vol. 439, pp. 522–527. doi 10.1016/j.bbrc.2013.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, W. and Liu, M., Distribution of 5-hydroxymethylcytosine in different human tissues, J. Nucleic Acids, 2011, vol. 2011, p. 870726. doi 10.4061/2011/870726

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gustafson, C.B., Yang, C., Dickson, K.M., et al., Epigenetic reprogramming of melanoma cells by vitamin C treatment, Clin. Epigenet., 2015, vol. 7, p. 51. doi 10.1186/s13148-015-0087-z

    Article  Google Scholar 

  26. Yuan, B.F., 5-methylcytosine and its derivatives, Adv. Clin. Chem., 2014, vol. 67, pp. 151–187. doi 10.1016/bs.acc.2014.09.003

    Article  PubMed  Google Scholar 

  27. Li, M., Hu, S.L., Shen, Z.J., et al., High-performance capillary electrophoretic method for the quantification of global DNA methylation: Application to methotrexate-resistant cells, Anal. Biochem., 2009, vol. 387, pp. 71–75. doi 10.1016/j.ab.2008.12.033

    Article  CAS  PubMed  Google Scholar 

  28. Fraga, M.F., Uriol, E., Borja Diego, L., et al., Highperformance capillary electrophoretic method for the quantification of 5-methyl 2'-deoxycytidine in genomic DNA: Application to plant, animal and human cancer tissues, Electrophoresis, 2002, vol. 23, pp. 1677–1681. <1677:: AIDELPS1677>3.0.CO;2-Z doi 10.1002/1522-2683(200206)23:11

    Article  CAS  PubMed  Google Scholar 

  29. Stach, D., Schmitz, O.J., Stilgenbauer, S., et al., Capillary electrophoretic analysis of genomic DNA methylation levels, Nucleic Acid Res., 2003, vol. 31, p. E2.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fraga, M.F., Rodriguez, R., and Canal, M.J., Rapid quantification of DNA methylation by high performance capillary electrophoresis, Electrophores, 2000, vol. 21, pp. 2990–2994. doi 10.1002/1522-2683(20000801)21:14<2990::AID-ELPS2990>3.0.CO;2-I

    Article  CAS  Google Scholar 

  31. Zinellu, A., Sotgia, S., De Murtas, V., et al., Evaluation of methylation degree from formalin-fixed paraffinembedded DNA extract by field-amplified sample injection capillary electrophoresis with UV detection, Anal. Bioanal. Chem., 2011, vol. 399, pp. 1181–1186. doi 10.1007/s00216-010-4417-x

    Article  CAS  PubMed  Google Scholar 

  32. Wirtz, M., Stach, D., Kliem, H.C., et al., Determination of the DNA methylation level in tumor cells by capillary electrophoresis and laser-induced fluorescence detection, Electrophoresis, 2004, vol. 25, pp. 839–845. doi 10.1002/elps.200305761

    Article  CAS  PubMed  Google Scholar 

  33. Wang, X., Song, Y., Song, M., et al., Fluorescence polarization combined capillary electrophoresis immunoassay for the sensitive detection of genomic DNA methylation, Anal. Chem., 2009, vol. 81, pp. 7885–7891.

    Article  CAS  PubMed  Google Scholar 

  34. Motorin, Y., Lyko, F., and Helm, M., 5-methylcytosine in RNA: Detection, enzymatic formation and biological functions, Nucleic Acid Res., 2010, vol. 38, pp. 1415–1430. doi 10.1093/nar/gkp1117

    Article  CAS  PubMed  Google Scholar 

  35. Yin, R., Mao, S.Q., Zhao, B., et al., Ascorbic acid enhances tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals, J. Am. Chem. Soc., 2013, vol. 135, pp. 10396–10403. doi 10.1021/ja4028346

    Article  CAS  PubMed  Google Scholar 

  36. Yang, I., Fortin, M.C., Richardson, J.R., and Buckley, B., Fused-core silica column ultra-performance liquid chromatography-ion trap tandem mass spectrometry for determination of global DNA methylation status, Anal. Biochem., 2011, vol. 409, pp. 138–143. doi 10.1016/j.ab.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  37. Wang, X., Suo, Y., Yin, R., et al., Ultra-performance liquid chromatography/tandem mass spectrometry for accurate quantification of global DNA methylation in human sperms, J. Chromatogr., B Analyt. Technol. Biomed. Life Sci., 2011, vol. 879, pp. 1647–1652. doi 10.1016/j.jchromb.2011.04.002

    Article  CAS  Google Scholar 

  38. Kok, R.M., Smith, D.E., Barto, R., et al., Global DNA methylation measured by liquid chromatography-tandem mass spectrometry: Analytical technique, reference values and determinants in healthy subjects, Clin. Chem. Lab. Med., 2007, vol. 45, pp. 903–911. doi 10.1515/CCLM.2007.137

    Article  CAS  PubMed  Google Scholar 

  39. Romerio, A.S., Fiorillo, G., Terruzzi, I., et al., Measurement of DNA methylation using stable isotope dilution and gas chromatography-mass spectrometry, Anal. Biochem., 2005, vol. 336, pp. 158–163. doi 10.1016/j.ab.2004.09.034

    Article  PubMed  Google Scholar 

  40. Rossella, F., Polledri, E., Bollati, V., et al., Development and validation of a gas chromatography/mass spectrometry method for the assessment, Rapid Commun. Mass Spectrom., 2009, vol. 23, no. 17, pp. 2637–2646. doi 10.1002/rcm.4166

    Article  CAS  PubMed  Google Scholar 

  41. Tang, Y., Gao, X.D., Wang, Y., et al., Widespread existence of cytosine methylation in yeast DNA measured by gas chromatography/mass spectrometry, Anal. Chem., 2012, vol. 84, pp. 7249–7255. doi 10.1021/ac301727c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leonard, S.A., Wong, S.C., and Nyce, J.W., Quantitation of 5-methylcytosine by onedimensional high-performance thin-layer chromatography, J. Chromatogr., 1993, vol. 645, pp. 189–192.

    Article  CAS  PubMed  Google Scholar 

  43. Barciszewska, M.Z., Barciszewska, A.M., and Rattan, S.I., TLC-based detection of methylated cytosine: Application to aging epigenetics, Biogerontology, 2007, vol. 8, pp. 673–678. doi 10.1007/s10522-007-9109-3

    Article  CAS  PubMed  Google Scholar 

  44. Ito, S., Shen, L., Dai, Q., et al., Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine, Science, 2011, vol. 333, pp. 1300–1303. doi 10.1126/science.1210597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oakeley, E.J., Schmitt, F., and Jost, J.P., Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction, BioTechniques, 1999, vol. 27, pp. 744–746, 748–750, 752.

    CAS  PubMed  Google Scholar 

  46. Frommer, M., McDonald, L.E., Millar, D.S., et al., A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, pp. 1827–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu, J., Xing, X., Xu, X., et al., Selective chemical labelling of 5-formylcytosine in DNA by fluorescent dyes, Chemistry, 2013, vol. 19, pp. 5836–5840. doi 10.1002/chem.201300082

    Article  CAS  PubMed  Google Scholar 

  48. Pendina, A.A., Efimova, O.A., Kaminskaya, A.N., et al., Immunocytochemical analysis of human metaphase chromosome methylation status, Tsitologiya, 2005, vol. 47, no. 8, pp. 731–737.

    CAS  Google Scholar 

  49. Efimova, O.A., Pendina, A.A., Tikhonov, A.V., et al., A comparative immunocytochemical analysis of DNA methylation patterns in human metaphase chromosomes of adults and fetuses, Mol. Med., 2015, no. 3, pp. 17–21.

    Google Scholar 

  50. Kokalj-Vokac, N., Zagorac, A., Pristovnik, M., et al., DNA methylation of the extraembryonic tissues: An in situ study on human metaphase chromosomes, Chromosome Res., 1998, vol. 6, no. 3, pp. 161–166.

    Article  CAS  PubMed  Google Scholar 

  51. Baranov, V.S., Pendina, A.A., Kuznetsova, T.V., et al., Peculiarities of metaphase chromosome methylation pattern in preimplantation human embryos, Tsitologiya, 2005, vol. 47, no. 8, pp. 723–730.

    CAS  Google Scholar 

  52. Pendina, A.A., Efimova, O.A., Fedorova, I.D., et al., DNA methylation patterns of metaphase chromosomes in human preimplantation embryos, Cytogenet. Genome Res., 2011, vol. 132, nos. 1–2, pp. 1–7. doi 10.1159/000318673

    Article  CAS  PubMed  Google Scholar 

  53. Efimova, O.A., Pendina, A.A., Tikhonov, A.V., et al., Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos, Reproduction, 2015, vol. 149, no. 3, pp. 223–233. doi 10.1530/REP-14-0343

    Article  CAS  PubMed  Google Scholar 

  54. Nestor, C., Ruzov, A., Meehan, R., and Dunican, D., Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA, BioTechniques, 2010, vol. 48, no. 4, pp. 317–319. doi 10.2144/000113403

    Article  CAS  PubMed  Google Scholar 

  55. Kinney, S.M., Chin, H.G., Vaisvila, R., et al., Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes, J. Biol. Chem., 2011, vol. 286, pp. 24685–24693. doi 10.1074/jbc.M110.217083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Clark, S.J., Harrison, J., Paul, C.L., and Frommer, M., High sensitivity mapping of methylated cytosines, Nucleic Acid Res., 1994, vol. 22, pp. 2990–2997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Booth, M.J., Branco, M.R., Ficz, G., et al., Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution, Science, 2012, vol. 336, pp. 934–937. doi 10.1126/science.1220671

    Article  CAS  PubMed  Google Scholar 

  58. Yu, M., Hon, G.C., Szulwach, K.E., et al., Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome, Cell, 2012, vol. 149, pp. 1368–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Booth, M.J., Marsico, G., Bachman, M., et al., Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution, Nat. Chem., 2014, vol. 6, no. 5, pp. 435–440. doi 10.1038/nchem.1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thu, K.L., Pikor, L.A., Kennett, J.Y., et al., Methylation analysis by DNA immunoprecipitation, J. Cell. Physiol., 2010, vol. 222, pp. 522–531. doi 10.1002/jcp.22009

    CAS  PubMed  Google Scholar 

  61. Robertson, A.B., Dahl, J.A., and Vagbo, C.B., et al., A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA, Nucleic Acid Res., 2011, vol. 39, p. e55. doi 10.1093/nar/gkr051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Raiber, E.A., Beraldi, D., Ficz, G., et al., Genomewide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase, Genome Biol., 2012, vol. 13, p. R69. doi 10.1186/gb-2012-13-8-r69

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lu, X., Song, C.X., Szulwach, K., et al., Chemical modification-assisted bisulfite sequencing (CABSeq) for 5-carboxylcytosine detection in DNA, J. Am. Chem. Soc., 2013, vol. 135, pp. 9315–9317. doi 10.1021/ja4044856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Korlach, J. and Turner, S.W., Going beyond five bases in DNA sequencing, Curr. Opin. Struct. Biol., 2012, vol. 22, pp. 251–261. doi 10.1016/j.sbi.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  65. Flusberg, B.A., Webster, D.R., Lee, J.H., et al., Direct detection of DNA methylation during singlemolecule, real-time sequencing, Nat. Methods, 2010, vol. 7, pp. 461–465. doi 10.1038/nmeth.1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song, C.X., Clark, T.A., and Lu, X.Y., et al., Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine, Nat. Methods, 2012, vol. 9, pp. 75–77. doi 10.1038/ncomms1237

    Article  CAS  Google Scholar 

  67. Globisch, D., Munzel, M., Muller, M., et al., Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates, PLoS One, 2010, vol. 5, no. 12, p. e15367. doi 10.1371/journal. pone.0015367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pfaffeneder, T., Spada, F., Wagner, M., et al., Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA, Nat. Chem. Biol., 2014, vol. 10, pp. 574–581. doi 10.1038/nchembio.1532

    Article  CAS  PubMed  Google Scholar 

  69. Song, J. and Pfeifer, G.P., Are there specific readers of oxidized 5-methylcytosine bases?, BioEssays, 2016, vol. 38, pp. 1038–1047. doi 10.1002/bies.201600126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stroud, H., Feng, S., Morey Kinney, S., et al., 5-hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells, Genome Biol., 2011, vol. 12, p. R54. doi 10.1186/gb-2011-12-6-r54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hon, G.C., Song, C.X., Du, T., et al., 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation, Mol. Cell, 2014, vol. 56, pp. 286–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lu, F., Liu, Y., Jiang, L., et al., Role of Tet proteins in enhancer activity and telomere elongation, Genes Dev., 2014, vol. 28, pp. 2103–2119. doi 10.1101/gad.248005.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Song, C.X., Szulwach, K.E., Dai, Q., et al., Genomewide profiling of 5-formylcytosine reveals its roles in epigenetic priming, Cell, 2013, vol. 153, pp. 678–691. doi 10.1016/j.cell.2013.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shen, L., Wu, H., Diep, D., et al., Genome-wide analysis reveals TET-and TDG-dependent 5-methylcytosine oxidation dynamics, Cell, 2013, vol. 153, pp. 692–706. doi 10.1016/j.cell.2013.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Williams, K., Christensen, J., and Helin, K., DNA methylation: TET proteins-guardians of CpG islands?, EMBO Rep., 2012, vol. 13, pp. 28–35. doi 10.1038/embor.2011.233

    Article  CAS  Google Scholar 

  76. Rauch, T.A., Wu, X., Zhong, X., et al., A human B cell methylome at 100-base pair resolution, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 3, pp. 671–678. doi 10.1073/pnas.0812399106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Song, C.X., Szulwach, K.E., Fu, Y., et al., Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine, Nat. Biotechnol., 2011, vol. 29, pp. 68–72. doi 10.1038/nbt.1732

    Article  CAS  PubMed  Google Scholar 

  78. Spruijt, C.G., Gnerlich, F., Smits, A.H., et al., Dynamic readers for 5-(hydroxy) methylcytosine and its oxidized derivatives, Cell, 2013, vol. 152, pp. 1146–1159. doi 10.1016/j.cell.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  79. Iurlaro, M., Ficz, G., Oxley, D., et al., A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation, Genome Biol., 2013, vol. 14, p. R119. doi 10.1186/gb-2013-14-10-r119

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhou, T., Xiong, J., Wang, M., et al., Structural basis for hydroxymethylcytosine recognition by the SRA domain of UHRF2, Mol. Cell, 2014, vol. 54, pp. 879–886. doi 10.1016/j.molcel.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  81. Iurlaro, M., McInroy, G.R., Burgess, H.E., et al., In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine, Genome Biol., 2016, vol. 17, no. 1, p. 141. doi 10.1186/s13059-016-1001-5

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bachman, M., Uribe-Lewis, S., Yang, X., et al., 5-formylcytosine can be a stable DNA modification in mammals, Nat. Chem. Biol., 2015, vol. 11, pp. 555–557. doi 10.1038/nchembio.1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Raiber, E.A., Murat, P., Chirgadze, D.Y., et al., 5-formylcytosine alters the structure of the DNA double helix, Nat. Struct. Mol. Biol., 2015, vol. 22, pp. 44–49. doi 10.1038/nsmb.2936

    Article  CAS  PubMed  Google Scholar 

  84. Hashimoto, H., Olanrewaju, Y.O., Zheng, Y., et al., Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence, Genes Dev., 2014, vol. 28, pp. 2304–2313. doi 10.1101/gad.250746.114

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jin, S.G., Zhang, Z.M., Dunwell, T.L., et al., Tet3 reads 5-carboxylcytosine through its CXXC domain and is a potential guardian against neurodegeneration, Cell Rep., 2016, vol. 14, pp. 493–505. doi 10.1016/j.celrep. 2015.12.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, L., Zhou, Y., Xu, L., et al., Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex, Nature, 2015, vol. 523, pp. 621–625. doi 10.1038/nature14482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hashimoto, H., Zhang, X., and Cheng, X., Activity and crystal structure of human thymine DNA glycosylase mutant N140A with 5-carboxylcytosine DNA at low pH, DNA Repair (Amst)., 2013, vol. 12, pp. 535–540. doi 10.1016/j.dnarep.2013.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, L., Lu, X., Lu, J., et al., Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA, Nat. Chem. Biol., 2012, vol. 8, pp. 328–330. doi 10.1038/nchembio.914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu, Y., Xu, C., Kato, A., et al., Tet3CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development, Cell, 2012, vol. 151, pp. 1200–1213. doi 10.1016/j.cell.2012.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Allen, M.D., Grummitt, C.G., Hilcenko, C., et al., Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase, EMBO J., 2006, vol. 25, pp. 4503–4512. doi 10.1038/sj.emboj.7601340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cierpicki, T., Risner, L.E., Grembecka, J., et al., Structure of the MLL CXXC domain-DNA complex and its functional role in MLL-AF9 leukemia, Nat. Struct. Mol. Biol., 2010, vol. 17, pp. 62–68. doi 10.1038/nsmb.1714

    Article  CAS  PubMed  Google Scholar 

  92. Song, J., Rechkoblit, O., Bestor, T.H., and Patel, D.J., Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation, Science, 2011, vol. 331, pp. 1036–1040. doi 10.1126/science. 1195380

    Article  CAS  PubMed  Google Scholar 

  93. Xu, C., Bian, C., Lam, R., et al., The structural basis for selective binding of non-methylated CpG islands by the CFP1CXXC domain, Nat. Commun., 2011, vol. 2, p. 227. doi 10.1038/ncomms1237

    Article  PubMed  PubMed Central  Google Scholar 

  94. Branco, M.R., Ficz, G., and Reik, W., Uncovering the role of 5-hydroxymethylcytosine in the epigenome, Nat. Rev. Genet., 2011, vol. 13, pp. 7–13. doi 10.1038/nrg3080

    Article  PubMed  Google Scholar 

  95. Efimova, O.A., Pendina, A.A., Tikhonov, A.V., et al., Oxidized form of 5-methylcytosine—5-hydroxymethylcytosine: A new insight into the biological significance in the mammalian genome, Russ. J. Genet.: Appl. Res., 2015, vol. 5, pp. 75–81.

    Article  CAS  Google Scholar 

  96. Dean, W., DNA methylation and demethylation: A pathway to gametogenesis and development, Mol. Reprod. Dev., 2014, vol. 81, no. 2, pp. 113–125. doi 10.1002/mrd.22280

    Article  CAS  PubMed  Google Scholar 

  97. Amouroux, R., Nashun, B., Shirane, K., et al., De novo DNA methylation drives 5hmC accumulation in mouse zygotes, Nat. Cell. Biol., 2016, vol. 18, no. 2, pp. 225–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Efimova.

Additional information

Original Russian Text © O.A. Efimova, A.A. Pendina, A.V. Tikhonov, V.S. Baranov, 2016, published in Ecologicheskaya Genetika, 2016, Vol. 14, No. 4, pp. 14–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimova, O.A., Pendina, A.A., Tikhonov, A.V. et al. The Evolution of Ideas on the Biological Role of 5-methylcytosine Oxidative Derivatives in the Mammalian Genome. Russ J Genet Appl Res 8, 11–21 (2018). https://doi.org/10.1134/S2079059718010069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059718010069

Keywords

Navigation