Skip to main content
Log in

TLC-based detection of methylated cytosine: application to aging epigenetics

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

5-Methylcytosine (m5C) has a plethora of functions and roles in various biological processes including human diseases and aging. A TLC-based fast and simple method for quantitative determination of total genomic levels of m5C in DNA is described, which can be applicable to aging research with respect to rapid and high throughput screening and comparison. Using this method, an example of the analysis of global alternations of m5C in serially passaged human skin fibroblasts is provided, which shows age-related global hypomethylation during cellular aging in vitro. This method can be useful for screening potential modulators of aging at the level of epigenetic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aas PA, Otterlei M, Falnes PQ, Vagbe CB, Skorpen F, Akbari M, Sundheim O, Bjoras M, Slupphaug G, Seeberg E, Krokan HE (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421:859–863

    Article  PubMed  CAS  Google Scholar 

  • Beedholm R, Clark BFC, Rattan SIS (2004) Mild heat stress stimulates 20S proteasome and its 11S activator in human fibroblasts undergoing aging in vitro. Cell Stress Chaperones 9:49–57

    PubMed  CAS  Google Scholar 

  • Cao H, Wang Y (2007) Quantification of oxidative single-base and intrastrand cross-link lesions in unmethylated and CpG-methylated DNA induced by Fenton-type reagents. Nucleic Acids Res 35:4833–4844

    Article  PubMed  CAS  Google Scholar 

  • Cox MM (2003) Better chemistry for better survival through regulation. Cell 112:286–287

    Article  PubMed  CAS  Google Scholar 

  • Dahl C, Guldberg P (2003) DNA methylation analysis techniques. Biogerontology 4:233–250

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10:2709–2721

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M (2003) Expression of various genes is controlled by DNA methylation during mammalian development. J Cell Biochem 88:899–910

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  PubMed  CAS  Google Scholar 

  • Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774

    Article  PubMed  CAS  Google Scholar 

  • Fonager J, Beedholm R, Clark BFC, Rattan SIS (2002) Mild stress-induced stimulation of heat-shock protein synthesis and improved functional ability of human fibroblasts undergoing aging in vitro. Exp Gerontol 37:1223–1228

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Agrelo R, Esteller M (2007) Cross-talk between aging and cancer: the epigenetic language. Ann NY Acad Sci 100:60–74

    Article  Google Scholar 

  • Fraga MF, Esteller M (2002) DNA methylation: a profile of methods and applications. Biotechniques 33:632–649

    PubMed  CAS  Google Scholar 

  • Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23:413–418

    Article  PubMed  CAS  Google Scholar 

  • Giles NM, Gutowski NJ, Giles GI, Jacob C (2003) Redox catalysts as sensitisers towards oxidative stress. FEBS Lett 535:179–182

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (2004) The multiple and irreversible causes of aging. J Gerontol 59A:568–572

    CAS  Google Scholar 

  • Holliday R (2005) DNA methylation and epigenotypes. Biochemistry (Mosc) 70:500–504

    Article  CAS  Google Scholar 

  • Hori M, Yonei S, Sugiyama H, Kino K, Yamamoto K, Zhang Q-M (2003) Identification of high expression capacity for 5-hydroxymethyluracil mispaired with guanine in DNA of E. coli MutM, Nei and Nth DNA glycosylases. Nucleic Acids Res 31:1191–1196

    Article  PubMed  CAS  Google Scholar 

  • Jeltsch A (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem 3:274–293

    Article  PubMed  CAS  Google Scholar 

  • Kamiya H, Tsuchiya H, Karino N, Veno Y, Matsuda A, Harashima H (2002) Mutagenicity of 5-formylcytosine, an oxidation product of 5-methylcytosine in DNA in mammalian cells. J Biochem 132:551–555

    PubMed  CAS  Google Scholar 

  • Kok RM, Smith DE, Barto R, Spijkerman AM, Teerlink T, Gellekink HJ, Jakobs C, Smulders YM (2007) Global DNA methylation measured by liquid chromatography-tandem mass spectrometry: analytical technique, reference values and determinants in healthy subjects. Clin Chem Lab Med 45:903–911

    Article  PubMed  CAS  Google Scholar 

  • Lu Q, Qiu X, Hu N, Wen H, Su Y, Richardon BC (2006) Epigenetic, disease, and therapeutic interventions. Ageing Res Rev 5:449–467

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  • Oakeley EJ (1999) DNA methylation analysis: a review of current methodologies. Pharmacol Ther 84:389–400

    Article  PubMed  CAS  Google Scholar 

  • Oakes CC, Smiraglia DJ, Plass C, Trasler JM, Robaire B (2003) Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc Natl Acad Sci USA 100:1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer GP (2000) p53 mutational spectra and the role of methylated CpG sequences. Mutat Res 450:155–166

    PubMed  CAS  Google Scholar 

  • Szyf M, Pakneshan P, Rabbani SA (2004) DNA demethylation and cancer: therapeutic implications. Cancer Lett 211:133–143

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi M, Oates AJ, Sekiya T (2002) An overview of the analysis of DNA methylation in mammalian genomes. Biol Chem 383:893–906

    Article  PubMed  CAS  Google Scholar 

  • Wojdacz TK, Hansen LL (2006) Techniques used in studies of age-related DNA methylation changes. Ann NY Acad Sci 1067:479–487

    Article  PubMed  CAS  Google Scholar 

  • Zukiel R, Nowak S, Barciszewska A-M, Gawronska I, Keith G, Barciszewska M (2004) A simple epigenetic method for the diagnosis and classification of brain tumors. Mol Cancer Res 2:196–202

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported within the project of MNISZW to M.B. Laboratory of Cellular Ageing at the University of Aarhus, Denmark is supported by research grants from the Danish Medical Research Council (FSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosława Z. Barciszewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barciszewska, M.Z., Barciszewska, A.M. & Rattan, S.I.S. TLC-based detection of methylated cytosine: application to aging epigenetics. Biogerontology 8, 673–678 (2007). https://doi.org/10.1007/s10522-007-9109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-007-9109-3

Keywords

Navigation