Skip to main content
Log in

The effect of space flight on genes expression in the brain of experimental animals

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Space flight results in a number of serious collateral physiological changes, primarily due to microgravity. In the search for the underlying mechanisms many approaches have been developed, from microgravity modeling on Earth to research in space, with studies of gene and protein expression being a core part of it. Unlike bone and muscular tissue, molecular changes in nerve cells during spaceflight have barely been studied. The purpose of this review is to summarize the recent advances in studies regarding changes of gene and protein expression in nervous system cells in conditions of microgravity. This review will focus to a large extent on the results of the Bion-M1 biosatellite. For the first time, we have detected the microgravity-responsive genes of dopamine (DA) and serotonin (5-HT) systems: tyrosine hydroxylase (TH), catechol-O-methyltransferase (COMT), and the first-type dopamine receptor (D1) in the nigrostriatal system; 2A subtype serotonin receptors (5-HT2A) and D1 receptors in the hypothalamus; and also monoamine oxidase A (MAO A) in the frontal cortex. The decrease in the expression of key genes of dopamine system may contribute to the development of locomotor disorders and dyskinesia both in animals and humans. Also, the system of neuronal apoptosis is activated under the influence of microgravity, as shown by the decrease in expression of antiapoptotic protein Bcl-XL in the hippocampus and its decrease in the hypothalamus. The long-term spaceflight has resulted in the dysregulation in the expression of genes encoding the glial neurotrophic factor (GDNF) and the dopamine neurotrophic factor (CDNF) in the brain. These neurophysiological factors play a crucial role in maintaining and protecting dopaminergic neurons, and therefore a decrease in their expression may be one of the causes of the negative impact of spaceflight on the brain’s dopamine system. The data obtained from the Bion-M1 biosatellite flight are unique because they, for the first time, have made it possible to the known neurophysiologial mechanisms for adapting the central nervous system to the microgravity based on solid molecular-genetic grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airavaara, M., Harvey, B.K., Voutilainen, M.H., Shen, H., Chou, J., Lindholm, P., Lindahl, M., Tuominen, R.K., Saarma, M., Hoffer, B., and Wang, Y., CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice, Cell Transplant, 2012, vol. 21, pp. 1213–1223.

    Article  PubMed  Google Scholar 

  • Andreev-Andrievskii, A.A., Shenkman, B.S., Popova, A.S., Dolgov, O.N., Anokhin, K.V., Soldatov, P.E., Vinogradova, O.L., Il’in, E.A., and Sychev, V.N., Experimental studies in mice according to the program of flight of the biosatellite “Bion-M1,” Aviakosm. Ekol. Med., 2014, vol. 48, no. 1, pp. 14–27.

    Google Scholar 

  • Andreev-Andrievskiy, A., Popova, A., Boyle, R., Alberts, J., Shenkman, B., Vinogradova, O., Dolgov, O., Anokhin, K., Tsvirkun, D., Soldatov, P., Nemirovskaya, T., Ilyin, E., and Sychev, V., Mice in Bion-M 1 space mission: Training and selection, PLoS One, 2015, vol. 9. http://journals.plos. org/plosone/article?id=10.1371/journal.pone.0104830/. Cited August 18, 2014.

  • Andressoo, J.O. and Saarma, M., Signalling mechanisms underlying development and maintenance of dopamine neurons, Curr. Opin. Neurobiol., 2008, vol. 18, pp. 297–306.

    Article  CAS  PubMed  Google Scholar 

  • Atomi, Y., Gravitational effects on human physiology, Subcell. Biochem., 2015, vol. 72, pp. 627–659.

    Article  CAS  PubMed  Google Scholar 

  • Aubert, A.E., Beckers, F., and Verheyden, B., Cardiovascular function and basics of physiology in microgravity, Acta. Cardiol., 2005, vol. 60, pp. 129–151.

    Article  PubMed  Google Scholar 

  • Baisch, F.J., Head down tilt combined with breathing assistance by the “IRON LUNG.” A new simulation model for cardiovascular deconditioning, skin, and kidney function in weightlessness?, J. Gravit. Physiol., 2002, vol. 9, pp. 67–68.

    Google Scholar 

  • Basso, N., Bellows, C.G., and Heersche, J.N., Effect of simulated weightlessness on osteoprogenitor cell number and proliferation in young and adult rats, Bone, 2005, vol. 36, pp. 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Blaber, E., Marçal, H., and Burns, B.P., Bioastronautics: The influence of microgravity on astronaut health, Astrobiology, 2010, vol. 10, pp. 463–473.

    Article  PubMed  Google Scholar 

  • Chen, J., Liu, R., Yang, Y., Li, J., Zhang, X., Li, J., Wang, Z., and Ma, J., The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons, Neurosci. Lett., 2011, vol. 505, no. 2, pp. 171–175.

    Article  CAS  PubMed  Google Scholar 

  • Clément, G. and Reschke, M.F., Neuroscience in Space, New York, Springer, 2008.

    Book  Google Scholar 

  • Clément, G. and Ngo-Anh, J.T., Space physiology II: Adaptation of the central nervous system to space flight - past, current, and future studies, Eur. J. Appl. Physiol., 2013, vol. 113, pp. 1655–1672.

    Article  PubMed  Google Scholar 

  • Convertino, V.A., Bloomfield, S.A., and Greenleaf, J.E., An overview of the issues: Physiological effects of bed rest and restricted physical activity, Med. Sci. Sports Exercise, 1997, vol. 29, pp. 187–190.

    Article  CAS  Google Scholar 

  • Cordero-Llana, O., Houghton, B.C., Rinaldi, F., Taylor, H., Yáñez-Muñoz, R.J., Uney, J.B., Wong, L.F., and Caldwell, M.A., Enhanced efficacy of the CDNF/MANF family by combined intranigral overexpression in the 6-OHDA rat model of Parkinson’s disease, Mol. Ther., 2015, vol. 23, pp. 244–254.

    Article  CAS  PubMed  Google Scholar 

  • Culman, J., Kvetnansky, T., Serova, L.V., Tigranjan, R.A., and Macho, L., Serotonin in individual hypothalamic nuclei of rats after space flight on biosatellite Cosmos 1129, Acta Astronaut., 1985, vol. 12, pp. 373–376.

    Article  CAS  PubMed  Google Scholar 

  • Damjanoska, K.J., Heidenreich, B.A., Kindel, G.H., D’Souza, D.N., Zhang, Y., Garcia, F., Battaglia, G., Wolf, W.A., Van De Kar, L.D., and Muma, N.A., Agonistinduced serotonin 2A receptor desensitization in the rat frontal cortex and hypothalamus, J. Pharmacol. Exp. Ther., 2004, vol. 309, no. 3, pp. 1043–1050.

    Article  CAS  PubMed  Google Scholar 

  • Day, J.R., Frank, A.T., O’Callaghan, J.P., and Dehart, B.W., Effects of microgravity and bone morphogenetic protein IIon GFAP in rat brain, J. Appl. Physiol., 1998, vol. 85, pp. 716–722.

    CAS  PubMed  Google Scholar 

  • DeFelipe, J., Arellano, J.I., Merchán-Pérez, A., González-Albo, M.C., Walton, K., and Llinás, R., Spaceflight induces changes in the synaptic circuitry of the postnatal developing neocortex, Cereb. Cortex, 2002, vol. 12, no. 8, pp. 883–891.

    Article  CAS  PubMed  Google Scholar 

  • Degan, P., Sancandi, M., Zunino, A., Ottaggio, L., Viaggi, S., Cesarone, F., Pippia, P., Galleri, G., and Abbondandolo, A., Exposure of human lymphocytes and lymphoblastoid cells to simulated microgravity strongly affects energy metabolism and DNA repair, J. Cell Biochem., 2005, vol. 94, pp. 460–469.

    Article  CAS  PubMed  Google Scholar 

  • De la Torre, G.G., Cognitive neuroscience in space, Life (Basel), 2014, vol. 4, pp. 281–294.

    Google Scholar 

  • Delp, M.D., Unraveling the complex web of impaired wound healing with mechanical unloading and physical deconditioning, J. Appl. Physiol., 2008, vol. 104, pp. 1262–1263.

    Article  PubMed  Google Scholar 

  • Elinder, F., Akanda, N., Tofighi, R., Shimizu, S., Tsujimoto, Y., Orrenius, S., and Ceccatelli, S., Opening of plasma membrane voltage dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli, Cell Death Differ., 2005, vol. 12, pp. 1134–1140.

    Article  CAS  PubMed  Google Scholar 

  • Felix, K., Wise, K., Manna, S., Yamauchi, K., Wilson, B.L., Thomas, R.L., Kulkarni, A., Pellis, N.R., and Ramesh, G.T., Altered cytokine expression in tissues of mice subjected to simulated microgravity, Mol. Cell Biochem., 2004, vol. 266, pp. 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Freed, L.E., Pellis, N., Searby, N., de Luis, J., Preda, C., Bordonaro, J., and Vunjak-Novakovic, G., Microgravity cultivation of cells and tissues, Gravit. Space Biol. Bull., 1999, vol. 12, pp. 57–66.

    CAS  PubMed  Google Scholar 

  • Frigeri, A., Iacobas, D.A., Iacobas, S., Nicchia, G.P., Desaphy, J.F., Camerino, D.C., Svelto, M., and Spray, D.C., Effect of microgravity on gene expression in mouse brain, Exp. Brain Res., 2008, vol. 191, no. 3, pp. 289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii, M.D. and Patten, B.M., Neurology of microgravity and space travel, Neurol. Clin., 1992, vol. 10, no. 4, pp. 999–1013.

    CAS  PubMed  Google Scholar 

  • Grace, A.A., Dopamine. Neuropsychopharmacology: The Fifth Generation of Progress, Davis, K.L., Charney, D., Coyle, J.T., and Nemeroff, C., Eds., Lippincott, Williams and Wilkins, Philadelphia: PA, 2002.

    Google Scholar 

  • Hughes-Fulford, M., Physiological effects of microgravity on osteoblast morphology and cell biology, Adv. Space Biol. Med., 2002, vol. 8, pp. 129–157.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, P.E., Alexi, T., Walton, M., Williams, C.E., Dragunow, M., Clark, R.G., and Gluckman, P.D., Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosisrelated genes within the central nervous system, Prog. Neurobiol., 1999, vol. 57, pp. 421–450.

    Article  CAS  PubMed  Google Scholar 

  • Infanger, M., Ulbrich, C., Baatout, S., Wehland, M., Kreutz, R., Bauer, J., Grosse, J., Vadrucci, S., Cogoli, A., Derradji, H., Neefs, M., Kusters, S., Spain, M., Paul, M., and Grimm, D., Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells, J. Cell Biochem., 2007, vol. 101, pp. 1439–1455.

    Article  CAS  PubMed  Google Scholar 

  • Kang, C.Y., Li, T., Zou, L., Yuan, M., Li, T.Z., Guo, Y.H., Wang, Y., and Liu, C.T., Salidroside inhibits clinorotationinduced apoptosis in pulmonary microvascular endothelial cells, Nan Fang Yi Ke Da Xue Xue Bao, 2011, vol. 31, pp. 649–652.

    CAS  PubMed  Google Scholar 

  • Klein-Nulend, J., Bacabac, R.G., Veldhuijzen, J.P., and Van Loon, J.J., Microgravity and bone cell mechanosensitivity, Adv. Space Res., 2003, vol. 32, pp. 1551–1559.

    Article  CAS  PubMed  Google Scholar 

  • Konstantinova, N.A., Buravkova, L.B., Manuilova, E.S., Arsen’eva, E.L., and Grivennikov, I.A., Clinorotation impact on neuronal differentiation of mouse embryonic stem cells of line R1, Aviakosm. Ekol. Med., 2010, vol. 44, no. 3, pp. 65–67.

    CAS  Google Scholar 

  • Kossmehl, P., Shakibaei, M., Cogoli, A., Infanger, M., Curcio, F., Schonberger, J., Eilles, C., Bauer, J., Pickenhahn, H., Schulze-Tanzil, G., Paul, M., and Grimm, D., Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways, Endocrinology, 2003, vol. 144, pp. 4172–4179.

    Article  CAS  PubMed  Google Scholar 

  • Kramar, E.A., Bernard, J.A., Gall, C.M., and Lynch, G., Integrins modulate fast excitatory transmission at hippo campal synapses, J. Biol. Chem., 2003, vol. 270, pp. 10722–10730.

    Article  Google Scholar 

  • Krasnov, I.B., Hyponoradrenergic syndrome of weightlessness: Its manifestations in mammals and possible mechanism, Physiologist, 1991, vol. 34, no. 1, pp. 23–26.

    Google Scholar 

  • Krasnov, I.B., Gravitational neuromorphology, Adv. Space Biol. Med., 1994, vol. 4, pp. 85–110.

    Article  CAS  PubMed  Google Scholar 

  • Kvetnansky, R., Culman, J., Serova, L.V., Tigranjan, R.A., Torda, T., and Macho, L., Catecholamines and their enzymes in discrete brain areas of rats after space flight on biosatellites Cosmos, Acta Astronaut., 1983, vol. 10, pp. 295–300.

    Article  CAS  PubMed  Google Scholar 

  • Lelkes, P.I., Galvan, D.L., Hayman, G.T., Goodwin, T.J., Chatman, D.Y., Cherian, S., Garcia, R.M., and Unsworth, B.R., Simulated microgravity conditions enhance differentiation of cultured PC12 cells towards the neuroendocrine phenotype, In Vitro Cell Dev. Biol. Anim., 1998, vol. 34, pp. 316–325.

    Article  CAS  PubMed  Google Scholar 

  • Lindholm, P., Voutilainen, M.H., Laurén, J., Peränen, J., Leppänen, V.M., Andressoo, J.O., Lindahl, M., Janhunen, S., Kalkkinen, N., Timmusk, T., Tuominen, R.K., and Saarma, M., Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo, Nature, 2007, vol. 448, pp. 773–777.

    Article  Google Scholar 

  • Lindholm, P. and Saarma, M., Novel CDNF/MANF family of neurotrophic factors, Dev. Neurobiol., 2010, vol. 70, pp. 360–371.

    CAS  PubMed  Google Scholar 

  • Monticone, M., Liu, Y., Pujic, N., and Cancedda, R., Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure, J. Cell Biochem., 2010, vol. 111, no. 2, pp. 442–452.

    Article  CAS  PubMed  Google Scholar 

  • Morey-Holton, E.R. and Globus, R.K., Hindlimb unloading of growing rats: A model for predicting skeletal changes during space flight, Bone, 1998, vol. 22, pp. 83–88.

    Article  Google Scholar 

  • Morey-Holton, E.R., Globus, R.K., Kaplansky, A., and Durnova, G., The hindlimb unloading rat model: Literature overview, technique update and comparison with space flight data, Adv. Space Biol. Med., 2005, vol. 10, pp. 7–40.

    Article  PubMed  Google Scholar 

  • Nakamura, H., Kumei, Y., Morita, S., Shimokawa, H., Ohya, K., and Shinomiya, K., Antagonism between apoptotic (Bax/Bcl-2) and antiapoptotic (IAP) signals in human osteoblastic cells under vectoraveraged gravity condition, Ann. N. Y. Acad. Sci., 2003, vol. 1010, pp. 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Naumenko, V.S., Kulikov, A.V., Kondaurova, E.M., Tsybko, A.S., Kulikova, E.A., Krasnov, I.B., Shenkman, B.S., Sychev, V.N., Bazhenova, E.Y., Sinyakova, N.A., and Popova, N.K., Effect of actual long-term spaceflight on BDNF, TrkB, p75, BAX and BCL-XL genes expression in mouse brain regions, Neuroscience, 2015, vol. 284, pp. 730–736.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, H.L., Zhang, N., and Wen, X., Proteomics and genomics of microgravity, Physiol. Genomics, 2006, vol. 26, pp. 163–171.

    Article  CAS  PubMed  Google Scholar 

  • Oganov, V.S. and Potapov, A.N., Functional plasticity of mammalian skeletal muscles in conditions of weightlessness, Aviakosm. Ekol. Med., 2006, vol. 1, pp. 27–36.

    Google Scholar 

  • Oganov, V.S. and Bogomolov, V.V., Human bone system in conditions of weightlessness. Review of the results of research, hypotheses, and the possibility of predicting the state in long-term (interplanetary) missions, Aviakosm. Ekol. Med., 2009, vol. 1, pp. 3–12.

    Google Scholar 

  • Pascual, A., Hidalgo-Figueroa, M., Piruat, J.T., Pintado, C.O., Gomez-Diaz, R., and Lopez-Barneo, J., Absolute requirement of gdnf for adult catecholaminergic neuron survival, Nat. Neurosci., 2008, vol. 11, pp. 755–761.

    Article  CAS  PubMed  Google Scholar 

  • Pascual, A., Hidalgo-Figueroa, M., Gómez-Díaz, R., and López-Barneo, J., GDNF and protection of adult central catecholaminergic neurons, J. Mol. Endocrinol., 2011, vol. 46, pp. 83–92.

    Article  Google Scholar 

  • Popova, N.K. and Naumenko, V.S., 5-HT1A receptor as a key player in the brain 5-HT system, Rev. Neurosci., 2013, vol. 24, no. 2, pp. 191–204.

    CAS  PubMed  Google Scholar 

  • Popova, N.K., Kulikov, A.V., Kondaurova, E.M., Tsybko, A.S., Kulikova, E.A., Krasnov, I.B., Shenkman, B.S., Bazhenova, E.Y., Sinyakova, N.A., and Naumenko, V.S., Risk neurogenes for long-term spaceflight: Dopamine and serotonin brain system, Mol. Neurobiol., 2014, vol. 51, no. 3, pp. 1443–1451.

    Article  PubMed  Google Scholar 

  • Regnard, J., Heer, M., Drummer, C., and Norsk, P., Validity of microgravity simulation models on earth, Am. J. Kidney Dis., 2001, vol. 38, pp. 668–674.

    Article  CAS  PubMed  Google Scholar 

  • Rucci, N., Migliaccio, S., Zani, B.M., Taranta, A., and Teti, A., Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved Rotating Wall Vessel bioreactor (RWV), J. Cell Biochem., 2002, vol. 85, pp. 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Saavedra, A., Baltazar, G., and Duarte, E.P., Driving GDNF expression: The green and the red traffic lights, Prog. Neurobiol., 2008, vol. 86, pp. 186–215.

    Article  CAS  PubMed  Google Scholar 

  • Santucci, D., Kawano, F., Ohira, T., Terada, M., Nakai, N., Francia, N., Alleva, E., Aloe, L., Ochiai, T., Cancedda, R., Goto, K., and Ohira, Y., Evaluation of gene, protein and neurotrophin expression in the brain of mice exposed to space environment for 91 days, PLoS One, 2012, vol. 7. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040112/. Cited July 9, 2012.

  • Sarkar, P., Sarkar, S., Ramesh, V., Hayes, B.E., Thomas, R.L., Wilson, B.L., Kim, H., Barnes, S., Kulkarni, A., Pellis, N., and Ramesh, G.T., Proteomic analysis of mice hippocampus in simulated microgravity environment, J. Proteome Res., 2006, vol. 5, no. 3, pp. 548–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar, P., Sarkar, S., Ramesh, V., Kim, H., Barnes, S., Kulkarni, A., Hall, J.C., Wilson, B.L., Thomas, R.L., Pellis, N.R., and Ramesh, G.T., Proteomic analysis of mouse hypothalamus under simulated microgravity, Neurochem. Res., 2008, vol. 33, no. 11, pp. 2335–2341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slenzka, K., Neuroplasticity changes during space flight, Adv. Space Res., 2003, vol. 31, pp. 1595–1604.

    Article  CAS  PubMed  Google Scholar 

  • Sychev, V.N., Il’in, E.A., Yarmanova, E.N., Rakov, D.V., Ushakov, I.B., Kirilin, A.N., Orlov, O.I., and Grigor’ev, A.I., Project Bion-M1: General characteristics and preliminary results, Aviakosm. Ekol. Med., 2014, vol. 48, no. 1, pp. 7–14.

    CAS  Google Scholar 

  • Trappe, T., Trappe, S., Lee, G., Widrick, J., Fitts, R., and Costill, D., Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight, J. Appl. Physiol., 2006, vol. 100, pp. 951–957.

    Article  PubMed  Google Scholar 

  • Tsybko, A.S., Ilchibaeva, T.V., Kulikov, A.V., Kulikova, E.A., Krasnov, I.B., Sychev, V.N., Shenkman, B.S., Popova, N.K., and Naumenko, V.S., Effect of microgravity on glial cell line-derived neurotrophic factor and cerebral dopamine neurotrophic factor gene expression in the mouse brain, J. Neurosci. Res., 2015, vol. 93, no. 9, pp. 1399–1404.

    Article  CAS  PubMed  Google Scholar 

  • Unsworth, B.R. and Lelkes, P.I., Growing tissues in microgravity, Nat. Med., 1998, vol. 4, pp. 901–907.

    Article  CAS  PubMed  Google Scholar 

  • Uva, B.M., Masini, M.A., Sturla, M., Bruzzone, F., Giuliani, M., Tagliafierro, G., and Strollo, F., Microgravity-induced apoptosis in cultured glial cells, Eur. J. Histochem., 2002a, vol. 46, no. 3, pp. 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Uva, B.M., Masini, M.A., Sturla, M., Prato, P., Passalacqua, M., Giuliani, M., Tagliafierro, G., and Strollo, F., Clinorotation- induced weightlessness influences the cytoskeleton of glial cells in culture, Brain Res., 2002b, vol. 934, no. 2, pp. 132–139.

    Article  CAS  PubMed  Google Scholar 

  • Uva, B.M., Masini, M.A., Sturla, M., Tagliafierro, G., and Strollo, F., Microgravity-induced programmed cell death in astrocytes, J. Gravit. Physiol., 2002c, vol. 9, no. 1, pp. 275–276.

    Google Scholar 

  • Van de Kar, L.D., Javed, A., Zhang, Y., Serres, F., Raap, D.K., and Gray, T.S., 5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocinexpressing cells, J. Neurosci., 2001, vol. 21, no. 10, pp. 3572–3579.

    PubMed  Google Scholar 

  • Wang, J., Zhang, J., Bai, S., Wang, G., Mu, L., Sun, B., Wang, D., Kong, Q., Liu, Y., Yao, X., Xu, Y., and Li, H., Simulated microgravity promotes cellular senescence via oxidant stress in rat PC12 cells, Neurochem. Int., 2009, vol. 55, no. 7, pp. 710–716.

    Article  CAS  PubMed  Google Scholar 

  • Wise, K.C., Manna, S.K., Yamauchi, K., Ramesh, V., Wilson, B.L., Thomas, R.L., Sarkar, S., Kulkarni, A.D., Pellis, N.R., and Ramesh, G.T., Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment, In Vitro Cell Dev. Biol. Anim., 2005, vol. 41, no. 3, pp. 4–118.

    Article  Google Scholar 

  • Zhang, Y., Damjanoska, K.J., Carrasco, G.A., Dudas, B., D’Souza, D.N., Tetzlaff, J., Garcia, F., Hanley, N.R., Scripathirathan, K., Petersen, B.R., Gray, T.S., Battaglia, G., Muma, N.A., and Van de Kar, L.D., evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (–)DOI, J. Neurosci., 2002, vol. 22, no. 21, pp. 9635–9642.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Tsybko.

Additional information

Original Russian Text © A.S. Tsybko, T.V. Ilchibaeva, N.K. Popova, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 2, pp. 172–179.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsybko, A.S., Ilchibaeva, T.V. & Popova, N.K. The effect of space flight on genes expression in the brain of experimental animals. Russ J Genet Appl Res 7, 100–108 (2017). https://doi.org/10.1134/S2079059717010166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717010166

Keywords

Navigation