Skip to main content

Advertisement

Log in

Effect of microgravity on gene expression in mouse brain

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Changes in gravitational force such as that experienced by astronauts during space flight induce a redistribution of fluids from the caudad to the cephalad portion of the body together with an elimination of normal head-to-foot hydrostatic pressure gradients. To assess brain gene profile changes associated with microgravity and fluid shift, a large-scale analysis of mRNA expression levels was performed in the brains of 2-week control and hindlimb-unloaded (HU) mice using cDNA microarrays. Although to different extents, all functional categories displayed significantly regulated genes indicating that considerable transcriptomic alterations are induced by HU. Interestingly, the TIC class (transport of small molecules and ions into the cells) had the highest percentage of up-regulated genes, while the most down-regulated genes were those of the JAE class (cell junction, adhesion, extracellular matrix). TIC genes comprised 16% of those whose expression was altered, including sodium channel, nonvoltage-gated 1 beta (Scnn1b), glutamate receptor (Grin1), voltage-dependent anion channel 1 (Vdac1), calcium channel beta 3 subunit (Cacnb3) and others. The analysis performed by GeneMAPP revealed several altered protein classes and functional pathways such as blood coagulation and immune response, learning and memory, ion channels and cell junction. In particular, data indicate that HU causes an alteration in hemostasis which resolves in a shift toward a more hyper-coagulative state with an increased risk of venous thrombosis. Furthermore, HU treatment seems to impact on key steps of synaptic plasticity and learning processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CT:

Control

GES:

Gene expression stability

HU:

Hindlimb-unloaded

REV:

Relative estimated variability

CSD:

Cell cycle, shape, differentiation, death

[A apoptosis, C cell cycle (cyclin), D development, differentiation, organogenesis, G growth factors, hormones, cytokines, S shape, N oNcogenes, O others]

CYT:

Cytoskeleton

ENE:

Energy metabolism

MIT:

Mitochondrial proteins involved in cyclic acid cycle, respiratory chain

(L lipid metabolism, D degradation such as in peroxisomes, proteasome ubiquitination, G glycolysis, glycogenesis, O others)

JAE:

Cell junction, adhesion, extracellular matrix

[A antigens, integrins, G globulins and blood, M extracellular matrix, laminin, J junction and associated proteins, P proteases (such as metalloproteinases), O others]

RNA:

RNA processing

(M mRNA, R rRNA, T tRNA, MIT mitochondrial RNA)

SIG:

Cell signaling (G-proteins coupled receptors PKA PKC cAMP calcium MAPK SH2 SH3 Ca-binding proteins)

TIC:

Transport of small molecules and ions into the cells (transporters ion channels ionotropic receptors)

TRA:

Transcription

[D DNA transcription factors, P DNA processing (such as polymerases), O others]

TWC:

Transport of ions/molecules within the cells (vesicles, kinesin, endosomes, proteosomes, protein folding, lysosomes, nuclear transport)

UNK:

Function not yet assigned

References

  • Amin MS, Wang HW, Reza E, Whitman SC, Tuana BS, Leenen FH (2005) Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am J Physiol Regul Integr Comp Physiol 289:R1787–R1797

    PubMed  CAS  Google Scholar 

  • Angulo E, Noé V, Casadó V, Mallol J, Gomez-Isla T, Lluis C, Ferrer I, Ciudad CJ, Franco R (2004) Up-regulation of the Kv34 potassium channel subunit in early stages of Alzheimer’s disease. J Neurochem 91:547–557

    Article  PubMed  CAS  Google Scholar 

  • Belichenko PV (1998) Quantitative analysis of dendritic spines of pyramidal neurons in the layers of the sensorimotor cortex of rats exposed to the Cosmos-1667 biosputnik. Biull Eksp Biol Med 105:736–738

    Google Scholar 

  • Bleeker MW, Hopman MT, Rongen GA, Smits P (2004) Unilateral lower limb suspension can cause deep venous thrombosis. Am J Physiol Regul Integr Comp Physiol 286:R1176–R1177

    PubMed  Google Scholar 

  • Brooke RE, Atkinson L, Batten TF, Deuchars SA, Deuchars J (2004) Association of potassium channel Kv34 subunits with pre- and post-synaptic structures in brainstem and spinal cord. Neuroscience 126:1001–1010

    Article  PubMed  CAS  Google Scholar 

  • Broze GJ (1998) Tissue factor pathway inhibitor gene disruption. Blood Coagul Fibrinolysis 9:S89–S92

    PubMed  CAS  Google Scholar 

  • Buettner R, Papoutsoglou G, Scemes E, Spray DC, Dermietzel R (2000) Evidence for secretory pathway localization of a voltage-dependent anion channel isoform. Proc Natl Acad Sci USA 97:3201–3206

    Article  PubMed  CAS  Google Scholar 

  • Cavallaro S, D’Agata V, Manickam P, Dufour F, Alkon DL (2002) Memory-specific temporal profiles of gene expression in the hippocampus. Proc Natl Acad Sci USA 99:16279–16284

    Article  PubMed  CAS  Google Scholar 

  • Chan CS, Weeber EJ, Kurup S, Sweatt JD, Davis RL (2003) Integrin requirement for hippocampal synaptic plasticity and spatial memory. J Neurosci 23:7107–7116

    PubMed  CAS  Google Scholar 

  • Convertino VA, Doerr DF, Mathes KL, Stein SL, Buchanan P (1989) Changes in volume, muscle compartment, and compliance of the lower extremities in man following 30 days of exposure to simulated microgravity. Aviat Space Environ Med 60:653–658

    PubMed  CAS  Google Scholar 

  • Cooper DN (1991) The molecular genetics of familial venous thrombosis. Blood Rev 5:55–70

    Article  PubMed  CAS  Google Scholar 

  • Cooper EC (2001) Potassium channels: how genetic studies of epileptic syndromes open paths to new therapeutic targets and drugs. Epilepsia 5:49–54

    Article  Google Scholar 

  • Cottrell GS, Coelho AM, Bunnett NW (2002) Protease-activated receptors: the role of cell-surface proteolysis in signaling. Essays Biochem 38:169–183

    PubMed  CAS  Google Scholar 

  • Davie EW, Fujikawa K, Kisiel W (1991) The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30:10363–10370

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J, Arellano JI, Merchán-Pérez A, González-Albo MC, Walton K, Llinás R (2002) Spaceflight induces changes in the synaptic circuitry of the postnatal developing neocortex. Cereb Cortex 12:883–891

    Article  PubMed  CAS  Google Scholar 

  • Del Signore A, Mandillo S, Rizzo A, Di Mauro E, Mele A, Negri R, Oliverio A, Paggi P (2004) Hippocampal gene expression is modulated by hypergravity. Eur J Neurosci 19:667–677

    Article  PubMed  CAS  Google Scholar 

  • Desaphy JF, Pierno S, Liantonio A, De Luca A, Leoty C, Conte Camerino D (1998) Comparison of excitability parameters and sodium channel behavior of fast- and slow-twitch rat skeletal muscles for the study of the effects of hindlimb suspension, a model of hypogravity. J Gravit Physiol 5:77–78

    Google Scholar 

  • De Santo NG, Christensen NJ, Drummer C, Kramer HJ, Regnard J, Heer M, Cirillo M, Norsk P (2001) Fluid balance and kidney function in space: introduction. Am J Kidney Dis 38:664–667

    Article  PubMed  Google Scholar 

  • Durzan DJ, Ventimiglia F, Havel L (1998) Taxane recovery from cells of Taxus in micro- and hypergravity. Acta Astronaut 42:455–463

    Article  PubMed  CAS  Google Scholar 

  • Elinder F, Akanda N, Tofighi R, Shimizu S, Tsujimoto Y, Orrenius S, Ceccatelli S (2005) Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ 12:1134–1140

    Article  PubMed  CAS  Google Scholar 

  • Esmon CT (2001) Protein C anticoagulant pathway and its role in controlling microvascular thrombosis and inflammation. Crit Care Med 29:S48–S51

    Article  PubMed  CAS  Google Scholar 

  • Fishman RA (1992) Cerebrospinal fluid in disease of the nervous system. Saunders, Philadelphia

  • Frigeri A, Nicchia GP, Desaphy JF, Pierno S, De Luca A, Camerino DC, Svelto M (2001) Muscle loading modulates aquaporin-4 expression in skeletal muscle. FASEB J 15:1282–1284

    Article  PubMed  CAS  Google Scholar 

  • Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    Article  PubMed  CAS  Google Scholar 

  • Grotewiel MS, Beck CD, Wu CF, Greenspan RJ (1998) Integrin-mediated short-term memory in Drosophila. Nature 18:7847–7855

    Google Scholar 

  • Grunwald T, Beck H, Lehnertz K, Blümcke I, Pezer N, Kurthen M, Fernández G, Van Roost D, Heinze HJ, Kutas M, Elger CE (1999) Evidence relating human verbal memory to hippocampal n-methyl-d-aspartate receptors. Proc Natl Acad Sci USA 96:12085–12089

    Article  PubMed  CAS  Google Scholar 

  • Hansen HH, Ebbesen C, Mathiesen C, Weikop P, Rønn LC, Waroux O, Scuvée-Moreau J, Seutin V, Mikkelsen JD (2006) The KCNQ channel opener retigabine inhibits the activity of mesencephalic dopaminergic systems of the rat. J Pharmacol Exp Ther 318:1006–1019

    Article  PubMed  CAS  Google Scholar 

  • Hargens AR, Steakai J, Johansson C, Tipton CM (1984) Tissue fluid shift, forelimb loading, and tail tension in tail suspended rats. Physiologist 27:S37–S38

    Google Scholar 

  • Hamilton JR, Cornelissen I, Coughlin SR (2004) Impaired hemostasis and protection against thrombosis in protease-activated receptor 4-deficient mice is due to lack of thrombin signaling in platelets. J Thromb Haemost 2:1429–1435

    Article  PubMed  CAS  Google Scholar 

  • Hering S, Berjukow S, Sokolov S, Marksteiner R, Weiss RG, Kraus R, Timin EN (2000) Molecular determinants of inactivation in voltage-gated Ca2+ channels. J Physiol 528:237–249

    Article  PubMed  CAS  Google Scholar 

  • Hetman M, Kharebava G (2006) Survival signaling pathways activated by NMDA receptors. Curr Top Med Chem 6:787–799

    Article  PubMed  CAS  Google Scholar 

  • Hodge T, Colombini M (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 157:271–279

    Article  PubMed  CAS  Google Scholar 

  • Hollister RD, Kisiel W, Hyman BT (1996) Immunohistochemical localization of tissue factor pathway inhibitor-1 (TFPI-1), a Kunitz proteinase inhibitor, in Alzheimer’s disease. Brain Res 728:13–29

    Article  PubMed  CAS  Google Scholar 

  • Hughes-Fulford M, Lewis ML (1996) Effects of microgravity on osteoblast growth activation. Exp Cell Res 224:103–109

    Google Scholar 

  • Iacobas DA, Iacobas S, Li W, Zoidl G, Dermietzel R, Spray DC (2005) Genes controlling multiple functional pathways are transcriptionally regulated in connexin43 null mouse heart. Physiol Gen 2:211–223

    Google Scholar 

  • Iacobas DA, Fan C, Iacobas S, Spray DC, Haddad GG (2006) Transcriptomic changes in developing kidney exposed to chronic hypoxia. Biochem Biophys Res Commun 349:329–338

    Article  PubMed  CAS  Google Scholar 

  • Iacobas DA, Iacobas S, Spray DC (2007) Connexin-dependent transcellular transcriptomic networks in mouse brain. Prog Biophys Mol Biol 94:168–184

    Article  Google Scholar 

  • Iacobas DA, Iacobas S, Werner P, Scemes E, Spray DC (2008a) Alteration of transcriptomic networks in adoptive transfer experimental autoimmune encephalomyelitis. Front Integr Neurosci 1:10. doi:10.3389/neuro.07/010.2007

    Google Scholar 

  • Iacobas DA, Fan C, Iacobas S, Haddad GG (2008b) Integrated transcriptomic response to cardiac chronic hypoxia: translation regulators and response to stress in cell survival. Funct Integr Genomics 8(3):265–275

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Mao XO, Eshoo MW, Nagayama T, Minami M, Simon RP, Greenberg DA (2001) Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 50:93–103

    Article  PubMed  CAS  Google Scholar 

  • Kamp P, Strathmann A, Ragg H (2001) Heparin cofactor II, antithrombin-beta and their complexes with thrombin in human tissues. Thromb Res 101:483–491

    Article  PubMed  CAS  Google Scholar 

  • Kimzey SL, Ritzmann SE, Mengelm CE, Fischer CL (1975) Skylab experiment results: hematology studies. Acta Astronaut 2:141–154

    Article  PubMed  CAS  Google Scholar 

  • Kramar EA, Bernard JA, Gall CM, Lynch G (2003) Integrins modulate fast excitatory transmission at hippocampal synapses. J Biol Chem 270:10722–10730

    Article  Google Scholar 

  • Lay AJ, Liang Z, Rosen ED, Castellino FJ (2005) Mice with a severe deficiency in protein C display prothrombotic and proinflammatory phenotypes and compromised maternal reproductive capabilities. J Clin Invest 115:1552–1561

    Article  PubMed  CAS  Google Scholar 

  • Ledesma MD, Da Silva JS, Schevchenko A, Wilm M, Dotti CG (2003) Proteomic characterisation of neuronal sphingolipid-cholesterol microdomains: role in plasminogen activation. Brain Res 987:107–116

    Article  PubMed  CAS  Google Scholar 

  • Lewis ML, Hughes-Fulford M (2000) Regulation of heat shock protein message in Jurkat cells cultured under serum-starved and gravity-altered conditions. J Cell Biochem 77:127–134

    Article  PubMed  CAS  Google Scholar 

  • Lin B, Arai AC, Lynch G, Gall CM (2003) Integrins regulate NMDA receptor-mediated synaptic currents. J Neurophysiol 89:2874–2878

    Article  PubMed  CAS  Google Scholar 

  • Ling Q, Jacovina AT, Deora A, Febbraio M, Simantov R, Silverstein RL, Hempstead B, Mark WH, Hajjar KA (2004) Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Invest 113:38–48

    PubMed  CAS  Google Scholar 

  • Menell JS, Cesarman GM, Jacovina AT, McLaughlin MA, Lev EA, Hajjar KA (1999) Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med 340:994–1004

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Matsui H, Shiraiwa T, Suzuki T, Sasano H, Takahashi E, Kashiwayanagi M (2006) Decreases in pheromonal responses at the accessory olfactory bulb of mice with a deficiency of the alpha1B or beta3 subunits of voltage-dependent Ca2+-channels. Biol Pharm Bull 29:437–442

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Nakagawasai O, Yanai K, Nunoki K, Tan-No K, Tadano T, Iijima T (2007) Modified behavioral characteristics following ablation of the voltage-dependent calcium channel beta3 subunit. Brain Res 1160:102–112

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M (1998) Glutamate receptors: brain function and signal transduction Brain. Res Brain Res Rev 26:230–235

    Article  Google Scholar 

  • Nose K, Shibanuma M (1994) Induction of early response genes by hypergravity in cultured mouse osteoblastic cells (MC3T3-E1). Exp Cell Res 211:168–170

    Article  PubMed  CAS  Google Scholar 

  • Ohya S, Tanaka M, Oku T, Asai Y, Watanabe M, Giles WR, Imaizumi Y (1997) Molecular cloning and tissue distribution of an alternatively spliced variant of an A-type K+ channel alpha-subunit, Kv4.3 in the rat. FEBS Lett 420:47–53

    Article  PubMed  CAS  Google Scholar 

  • Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Suh YS, Kim H, Rhyu IJ, Kim HL (1997) Chromosomal localization and neural distribution of voltage dependent calcium channel beta 3 subunit gene. Mol Cells 7:200–203

    PubMed  CAS  Google Scholar 

  • Pompeiano O, d’Ascanio P, Balaban E, Centini C, Pompeiano M (2004) Gene expression in autonomic areas of the medulla and the central nucleus of the amygdala in rats during and after space flight. Neuroscience 124:53–69

    Article  PubMed  CAS  Google Scholar 

  • Ragg H, Preibisch G (1988) Structure and expression of the gene coding for the human serpin hLS2. J Biol Chem 263:12129–12134

    PubMed  CAS  Google Scholar 

  • Rahmann H, Slenzka K, Kortje KH, Hilbig R (1992) Synaptic plasticity and gravity: ultrastructural, biochemical and physico-chemical fundamentals. Adv Space Res 12:63–72

    Article  PubMed  CAS  Google Scholar 

  • Roche KW, Standley S, McCallum J, Ly CD, Ehlers MD (2001) Molecular determinants of NMDA receptor internalization. Nat Neurosci 4:794–802

    Article  PubMed  CAS  Google Scholar 

  • Sarkar P, Sarkar S, Ramesh V, Hayes BE, Thomas RL, Wilson BL, Kim H, Barnes S, Kulkarni A, Pellis N, Ramesh GT (2006) Proteomic analysis of mice hippocampus in simulated microgravity environment. J Proteome Res 5:548–553

    Article  PubMed  CAS  Google Scholar 

  • Sarkar P, Sarkar S, Ramesh V, Kim H, Barnes S, Kulkarni A, Hall JC, Wilson BL, Thomas RL, Pellis NR, Ramesh GT (2008) Proteomic analysis of mouse hypothalamus under simulated microgravity. Neurochem Res May 13 [Epub ahead of print] PMID: 18473167

  • Schwartz M, Schaller M, Ginsberg M (1995) Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 11:549–599

    Article  PubMed  CAS  Google Scholar 

  • Stephenson FA, Cousins SL, Kenny AV (2008) Assembly and forward trafficking of NMDA receptors. Mol Membr Biol 25:311–320

    Article  PubMed  CAS  Google Scholar 

  • Suo Z, Wu M, Citron BA, Gao C, Festoff BW (2003) Persistent protease-activated receptor 4 signaling mediates thrombin-induced microglial activation. Biol Chem 278:31177–31183

    Article  CAS  Google Scholar 

  • Tardy-Poncet B, Tardy B, Laporte S, Mismetti P, Amiral J, Piot M, Reynaud J, Campos L, Decousus H (2003) Poor anticoagulant response to tissue factor pathway inhibitor in patients with venous thrombosis. Thromb Haemost 1:507–510

    Article  CAS  Google Scholar 

  • Tong Q, Menon AG, Stockand JD (2006) Functional polymorphisms in the alpha-subunit of the human epithelial Na+ channel increase activity. Am J Physiol Renal Physiol 290:F821–F827

    Article  PubMed  CAS  Google Scholar 

  • Traina G, Bernardi R, Rizzo M, Calvani M, Durante M, Brunelli M (2006) Acetyl-l-carnitine up-regulates expression of voltage-dependent anion channel in the rat brain. Neurochem Int 48:673–678

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Horii A, Uno A, Fuse Y, Fukushima M, Doi K, Kubo T (2002) Quantitative changes in mRNA expression of glutamate receptors in the rat peripheral and central vestibular systems following hypergravity. J Neurochem 81:1308–1317

    Article  PubMed  CAS  Google Scholar 

  • Weeber J, Levy M, Sampson MJ, Anflous K, Armstron DL, Brown SE, Sweatt JD, Craigen WJ (2002) The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J Biol Chem 277:18891–18897

    Article  PubMed  CAS  Google Scholar 

  • Westrick RJ, Bodary PF, Xu Z, Shen YC, Broze GJ, Eitzman DT (2001) Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice. Circulation 103:3044–3046

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka R, Soga K, Wakabayashi K, Takeba G, Hoson T (2001) Hypergravity-induced changes in gene expression in Arabidopsis. Biol Sci Space 15:260–261

    PubMed  CAS  Google Scholar 

  • Young LR (1995) Effects of orbital space flight on vestibular reflexes and perception. Acta Astronaut 36:409–413

    Article  PubMed  CAS  Google Scholar 

  • Zhang GS, Mehringer JH, Van Deerlin VMD, Kozak CA, Tollefsen DM (1994) Murine heparin cofactor II: purification, cDNA sequence, expression and gene structure. Biochemistry 33:3632–3642

    Article  PubMed  CAS  Google Scholar 

  • Zhao WQ, Waisman DM, Grimaldi M (2004) Specific localization of the annexin II heterotetramer in brain lipid raft fractions and its changes in spatial learning. J Neurochem 90:609–620

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Italian Space Agency (I/R/372/02, OSMA) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Frigeri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

All regulated genes in HU versus control brain (DOC 436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frigeri, A., Iacobas, D.A., Iacobas, S. et al. Effect of microgravity on gene expression in mouse brain. Exp Brain Res 191, 289–300 (2008). https://doi.org/10.1007/s00221-008-1523-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1523-5

Keywords

Navigation