Skip to main content
Log in

DNA barcoding: How many earthworm species are there in the south of West Siberia?

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Earthworms are a widespread and ecologically important group of animals, which has the highest total biomass in some ecosystems and often defines the composition of soil fauna. Earthworms are known to have high cryptic genetic diversity. In this study we attempted to estimate earthworm species diversity in the south of West Siberia by DNA barcoding. This method employs short fragments of the genome to identify species, and allows one to work with specimens that cannot be identified by conventional techniques, as well as to search for new species and predict their phylogenetic affinities. As the target sequence we took a fragment of the mitochondrial cytochrome oxidase 1 (cox1) gene. The studied territory (Novosibirsk and Tomsk oblasts, Altai krai, and the Altai Republic) is known to contain 16 species and subspecies of earthworms. We analyzed 259 individuals from twelve locations and detected 27 genetic clusters. Ten of them correspond to known species (A. caliginosa, E. fetida, O. tyrtaeum, D. rubidus tenuis, D. octaedra, E. balatonica, E. sibirica, as well as three genetic lineages ofE. nordenskioldi nordenskioldi). Seventeen of the 27 clusters do not have close sequence similarity to any known earthworm species. Representatives of some of these novel clusters are morphologically similar to the Eisenia n. nordenskioldi/E. n. pallida species complex and may belong to new genetic lineages of this complex. The rest of the novel clusters probably represent new earthworm species. Therefore, we can conclude that a large portion of earthworm biodiversity in the south of West Siberia is still unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bely, A.E. and Wray, G.A., Molecular phylogeny of naidid worms (Annelida: Clitellata) based on cytochrome oxidase i, Mol. Phylogenet. Evol., 2004, vol. 30, pp. 50–63. doi 10.1016/S1055-7903(03)00180-5

    Article  CAS  PubMed  Google Scholar 

  • Bienert, F., De Danieli, S., Miquel, C., Coissac, E., Poillot, C., and Brun, J.-J., Tracking earthworm communities from soil DNA, Mol. Ecol., 2012, vol. 21, no. 8, pp. 2017–2030. doi 10.1111/j.1365-294X.2011.05407.x

    Article  CAS  PubMed  Google Scholar 

  • Birky, C.W., Jr., Adams, J., Gemmel, M., and Perry, J., Using population genetic theory and DNA sequences for species detection and identification in asexual organisms, PLoS One, 2010, vol. 5, no. 5, p. 10609. doi 10.1371/journal. pone.0010609

    Article  Google Scholar 

  • Buckley, T.R., James, S., Allwood, J., Bartlam, S., Howitt, R., and Prada, D., Phylogenetic analysis of New Zealand earthworms (Oligochaeta: Megascolecidae) reveals ancient clades and cryptic taxonomic diversity, Mol. Phylogenet. Evol., 2011, vol. 58. doi 10.1016/j.ympev.2010.09.024

  • Chang, C.-H. and James, S., A critique of earthworm molecular phylogenetics, Pedobiologia, 2011, vol. 54, pp. S3–S9. doi 10.1016/j.pedobi.2011.07.015

    Article  Google Scholar 

  • Decaëns, T., Porco, D., Rougerie, R., Brown, G.G., and James, S.W., Potential of DNA barcoding for earthworm research in taxonomy and ecology, Appl. Soil Ecol., 2013, vol. 65, pp. 35–42. doi 10.1016/j.apsoil.2013.01.001

    Article  Google Scholar 

  • Fernández, R., Almodóvar, A., Novo, M., Simancas, B., and Díaz Cosín, D.J., Adding complexity to the complex: New insights into the phylogeny, diversification and origin of parthenogenesis in the Aporrectodea caliginosa species complex (Oligochaeta, Lumbricidae), Mol. Phylogen. Evol., 2012, vol. 64, no. 2, pp. 368–379. doi 10.1016/j.ympev.2012.04.011

    Article  Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotech., 1994, vol. 3, pp. 294–299.

    CAS  Google Scholar 

  • Giska, I., Sechi, P., and Babik, W., Deeply divergent sympatric mitochondrial lineages of the earthworm Lumbricus rubellus are not reproductively isolated, BMC Evol. Biol., 2015, vol. 15, p. 217. doi 10.1186/s12862-015-0488-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Hebert, P.D.N., Ratnasingham, S., and de Waard, J.R., Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species, Proc. R. Soc. B, 2003, vol. 270, pp. 96–99. doi 10.1098/rsbl.2003.0025

    Article  Google Scholar 

  • Hendrix, P.F., Callaham, M.A., Drake, J.M., Huang, C.-Y., James, S.W., Snyder, B.A., and Zhang, W., Pandora’s box contained bait: The global problem of introduced earthworms, Ann. Rev. Ecol., Evol. Syst., 2008, vol. 39, pp. 593–613. doi 10.1146/annurev.ecolsys.39.110707.173426

    Article  Google Scholar 

  • James, S.W. and Davidson, S.K., Molecular phylogeny of earthworms (Annelida: Crassiclitellata) based on 28S, 18S and 16S gene sequences, Invertebr. Syst., 2012, vol. 26, pp. 213–229. doi 10.1071/IS11012

    Article  Google Scholar 

  • King, R.A., Tibble, A.L., and Symondson, W.O.C., Opening a can of worms: Unprecedented sympatric cryptic diversity within British lumbricid earthworms, Mol. Ecol., 2008, vol. 17, no. 21, pp. 4684–4698. doi 10.1111/j.1365- 294X.2008.03931.x

    Article  PubMed  Google Scholar 

  • Pérez-Losada, M., Bloch, R., Breinholt, J.W., Pfenninger, M., and Domínguez, J., Taxonomic assessment of Lumbricidae (Oligochaeta) earthworm genera using DNA barcodes, Eur. J. Soil Biol., 2012, vol. 48, pp. 41–47. doi 10.1016/ j.ejsobi.2011.10.003

    Article  Google Scholar 

  • Pop, A.A., Cech, G., Wink, M., Csuzdi, C., and Pop, V.V., Application of 16S, 18S rDNA and COI sequences in the molecular systematics of the earthworm family Lumbricidae (Annelida, Oligochaeta), Eur. J. Soil Biol., 2007, vol. 43, pp. S43–S52. doi 10.1016/j.ejsobi.2007.08.007

    Article  CAS  Google Scholar 

  • Porco, D., Decaens, T., Deharveng, L., James, S.W., Skarzynski, D., Erséus, C., Butt, K.R., Richard, B., and Hebert, P.D.N., Biological invasions in soil: DNA barcoding as a monitoring tool in a multiple taxa survey targeting European earthworms and springtails in North America, Biol. Invasions, 2013, vol. 15, pp. 899–910. doi 10.1007/s10530-012-0338-2

    Article  Google Scholar 

  • Richard, B., Decaëns, T., Rougerie, R., James, S.W., Porco, D., and Hebert, P.D.N., Re-integrating earthworm juveniles into soil biodiversity studies: Species identification through DNA barcoding, Mol. Ecol. Res., 2010, vol. 10, no. 4, pp. 606–614. doi 10.1111/j.1755-0998.2009.02822.x

    Article  CAS  Google Scholar 

  • Shekhovtsov, S.V., Golovanova, E.V., and Peltek, S.E., Genetic diversity of the earthworm Octolasion tyrtaeum (Lumbricidae, Annelida), Pedobiologia, 2014a, vol. 57, pp. 245–250. doi 10.1016/j.pedobi.2014.09.002

    Article  Google Scholar 

  • Shekhovtsov, S.V., Golovanova, E.V., and Peltek, S.E., Cryptic diversity within the Nordenskiold’s earthworm, Eisenia nordenskioldi subsp. nordenskioldi (Lumbricidae, Annelida), Eur. J. Soil Biol., 2013, vol. 58, pp. 13–18. doi 10.1016/j.ejsobi.2013.05.004

    Article  Google Scholar 

  • Shekhovtsov, S.V., Golovanova, E.V., and Peltek, S.E., Invasive lumbricid earthworms of Kamchatka (Oligochaeta), Zool. Stud., 2014b, vol. 53, p. 52. doi 10.1186/s40555-014-0052-0

    Article  Google Scholar 

  • Shekhovtsov, S.V., Berman, D.I., and Peltek, S.E., Phylogeography of the Earthworm Eisenia nordenskioldi sub sp. nordenskioldi (Lumbricidae, Oligochaeta) in Northeastern Eurasia, Dokl. Biol. Sci., 2015, vol. 461, pp. 1–4. doi 10.1016/j.pedobi.2014.09.002

    Article  Google Scholar 

  • Striganova, B.R. and Poryadina, N.M., Zhivotnoe naselenie pochv boreal’nykh lesov Zapadno-Sibirskoi ravniny: (The Animal Population of Boreal Forest Soils of the West Siberian Plain), Moscow: KMK, 2005.

    Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739. doi 10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vsevolodova-Perel’, T.S., Dozhdevye chervi Rossii: Kadastr i opredelitel’: (Earthworms of Russia: The Inventory and Identifier), Moscow: Nauka, 1997.

    Google Scholar 

  • Waugh, J., DNA barcoding in animal species: Progress, potential and pitfalls, BioEssays, 2007, vol. 29, pp. 188–197. doi 10.1002/bies.20529

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shekhovtsov.

Additional information

Original Russian Text © S.V. Shekhovtsov, N.E. Bazarova, D.I. Berman, N.A. Bulakhova, E.V. Golovanova, S.V. Konyaev, T.M. Krugova, I.I. Lyubechanskii, S.E. Peltek, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 1, pp. 125–130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhovtsov, S.V., Bazarova, N.E., Berman, D.I. et al. DNA barcoding: How many earthworm species are there in the south of West Siberia?. Russ J Genet Appl Res 7, 57–62 (2017). https://doi.org/10.1134/S2079059717010130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717010130

Keywords

Navigation