Skip to main content
Log in

Genotyping of hexaploid wheat varieties from different Russian regions

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

We used molecular-genetic and molecular-cytology approaches to characterize the genomes of 20 varieties of wheat created in different regions of Russia. A molecular-genetic analysis was performed using 29 SSR-markers covering the entire genome, and 41 ISBP-markers localized on chromosome 5B. The analysis of genetic similarity based on the results of molecular genotyping showed that the winter wheat varieties form a common cluster, regardless of the origin or area of cultivation. This is primarily due to the fact that the varieties originating from the European part of Russia were used to establish winter wheat varieties for West Siberia. Comparative analysis of individual dendrograms constructed using 1–2 markers per chromosome, and with the involvement of a larger number of 5B-chromosome markers allowed us to identify varieties with the rearrangement of this chromosome and to assess genetic diversity. We found that winter wheat Vassa and spring wheat Chelyaba 75 were clustered closely together. This is an indirect confirmation of the use of winter wheat varieties in breeding to improve the productive potential of spring wheat. Molecular-cytology analysis by C-banding and fluorescence in situ hybridization (FISH) revealed various chromosomal rearrangements in 8 of the 20 cultivars studied, including translocations from S. cereale, Ae. speltoides and Th. intermedium. Thus, a combination of the two approaches allowed us to better characterize the genomes of the wheat varieties of various origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badaeva, E.D., Badaev, N.S., Gill, B.S., and Filatenko, A., Intraspecific karyotype divergence in Triticum araraticum (Poaceae), Plant Syst. Evol., 1994, vol. 192, pp. 117–145. doi 10.1007/BF00985912

    Article  Google Scholar 

  • Badaeva, E.D., Dedkova, O.S., Gay, G., Pukhalskyi, V.A., Zelenin, A.V., Bernard, S., and Bernard, M., Chromosomal rearrangements in wheat: Their types and distribution, Genome, 2007, vol. 50, pp. 907–926. doi 10.1139/G07-072

    Article  CAS  PubMed  Google Scholar 

  • Badaeva, E.D., Zoshchuk, S.A., Paux, E., Gay, G., Zoshchuk, N.V., Röger, D., Zelenin, A.V., Bernard, M., and Feuillet, C., Fat element—a new marker for chromosome and genome analysis in the Triticeae, Chromosome Res., 2010, vol. 18, pp. 697–709. doi 10.1007/s10577-010-9151-x

    Article  CAS  PubMed  Google Scholar 

  • Bedbrook, J.R., Jones, J., O’Dell, M., Thompson, R.D., and Flavell, R.B., A molecular description of telomeric heterochromatin in Secale species, Cell, 1980, vol. 19, pp. 545–560. doi 10.1016/0092-8674(80)90529-2

    Article  CAS  PubMed  Google Scholar 

  • Bonman, J.M., Babiker, E.M., Cuesta-Marcos, A., Esvelt-Klos, K., Brown-Guedira, G., Chao, S., See, D., Chen, J., Akhunov, E., Zhang, J., Bockelman, H.E., and Gordon, T.S., Genetic diversity among wheat accessions from the USDA national smal grains collection, Crop Sci., 2015, vol. 55, no. 3, pp. 1243–1253. doi 10.2135/cropsci2014.09.0621

    Article  Google Scholar 

  • Davoyan, R.O., Bebyakina, I.V., Davoyan, E.R., Bespalova, L.A., and Puzirnaya, O.Y., Use of the synthetic form Triticum miguschovae for common wheat improvement, Proc. of the 3rd Int. Conf. Plant Genetics, Genomics, Bioinformatics and Biotechnology (PlantGen 2015), Novosibirsk, 2015.

    Google Scholar 

  • Devos, K.M., Bryan, G.J., Collins, A.J., and Gale, M.D., Application of two microsatellite sequences in wheat storage proteins as molecular markers, Theor. Appl. Genet., 1995, vol. 90, pp. 247–252.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J., PHYLIP—Phylogeny Inference Package (Version 3.66), 2006. http://evolution.genetics.washington.edu/phylip.html.

    Google Scholar 

  • Friebe, B., Yiang, J., Raupp, W.J., McIntosh, A., and Gill, B.S., Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status, Euphytica, 1996, vol. 91, pp. 59–87. doi 10.1007/BF00035277

    Article  Google Scholar 

  • Friebe, B. and Gill, B.S., Chromosome banding and genome analysis in diploid and cultivated polyploid wheats, in Methods in Genome Analysis in Plants, Boca Raton, FL: CRC Press, 1996.

    Google Scholar 

  • Gill, B.S., Friebe, B., and Endo, T.R., Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum), Genome, 1991, vol. 34, pp. 830–839. doi 10.1139/g91-128

    Article  Google Scholar 

  • Huang, X.Q., Börner, A., Röder, M.S., and Ganal, M.W., Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers, Theor. Appl. Genet., 2002, vol. 105, pp. 699–707. doi 10.1007/s00122-002-0959-4

    Article  CAS  PubMed  Google Scholar 

  • Katalog raionirovannykh sortov sel’skokhozyaistvennykh kul’tur v Rossiiskoi Federatsii (Catalogue of Regionalized Crops Varieties in the Russian Federation), Moscow: Vserossiiskaya gosudarstvennaya komissiya po sortoispytaniyu sel’skokhozyaistvennykh kul’tur pri Gosagroprome RSFSR, 1992, vol. 1.

  • Khlestkina, E.K., Röder, M.S., Efremova, T.T., Borner, A., and Shumny, V.K., The genetic diversity of old and modern Siberian varieties of common spring wheat as determined by microsatellite markers, Plant Breed., 2004, vol. 123, pp. 122–127.

    Article  CAS  Google Scholar 

  • Komuro, S., Endo, R., Shikata, K., and Kato, A., Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure, Genome, 2013, vol. 56, pp. 131–137. doi 10.1139/gen-2013-0003

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewski, A.J., Frequency of 1RS.1AL and 1RS.1BL translocations in United States wheats, Crop Sci., 1990, vol. 30, pp. 1151–1153. doi 10.2135/cropsci1990. 0011183X003000050041x

    Article  Google Scholar 

  • Nei, M. and Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. U.S.A., 1979, vol. 76, pp. 5269–5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odintsova, I.G., Agafonova, N.A., and Boguslavskii, R.L., Soft wheat introgression lines with resistance to leaf rust transferred from Aegilops speltoides, Tr. Prikl. Bot. Genet. Sel., 1991, vol. 142, pp. 106–110.

    Google Scholar 

  • Paux, E., Röger, D., Badaeva, E., Gay, G., Bernard, M., Sourdille, P., and Feuillet, C., Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B, Plant J., 2006, vol. 48, pp. 463–474. doi 10.1111/j.1365- 313X.2006.02891.x

    Article  CAS  PubMed  Google Scholar 

  • Paux, E., Faure, S., Choulet, F., Röger, D., Gauthier, V., Martinant, J.P., Sourdille, P., Balfourier, F., Le Paslier, M.-C., Chauveau, A., Cakir, M., Gandon, B., And Feuillet, C., Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat, Plant Biotechnol., 2010, vol. 8, pp. 196–210. doi 10.1111/j.1467-7652.2009.00477.x

    Article  CAS  Google Scholar 

  • Paux, E., Sourdille, P., Mackay, I., and Feuillet, C., Sequence-based marker development in wheat: advances and applications to breeding, Biotechnol. Adv., 2012, vol. 30, pp. 1071–1088.

    Article  CAS  PubMed  Google Scholar 

  • Plaschke, J., Ganal, M.W., and Röder, M.S., Detection of genetic diversity in closely related bread wheat using microsatellite markers, Theor. Appl. Genet., 1995, vol. 91, pp. 1001–1007. doi 10.1007/BF00223912

    CAS  PubMed  Google Scholar 

  • Rayburn, A.L. and Gill, B.S., Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa, Plant. Mol. Biol. Rep., 1986, vol. 4, pp. 102–109. doi 10.1007/BF02732107

    Article  CAS  Google Scholar 

  • Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., and Ganal, M.W., A microsatellite map of wheat, Genetics, 1998, vol. 149, pp. 2007–2023.

    PubMed  PubMed Central  Google Scholar 

  • Rutts, R.I., Istoriya razvitiya selektsionnoi raboty i sorta sel’skokhozyaistvennykh kul’tur Sibirskogo nauchno-issledovatel’skogo instituta sel’skogo khozyaistva (History of Development of Plant Breeding and Crop Varieties of the Siberian Research Institute of Agriculture), Novosibirsk: Yupiter, 2004.

    Google Scholar 

  • Salem, Kh.F.M. and Mattar, M.Z., Genetic diversity in old and modern Egyptian bread wheat (Triticum aestivum L.) varieties revealed by simple sequence repeats, Egypt. J. Genet. Cytol., 2014, vol. 43, pp. 143–156.

    Google Scholar 

  • Salina, E., Adonina, I., Vatolina, T., and Kurata, N., A comparative analysis of the composition and organization of two subtelomeric repeat families in Aegilops speltoides Tausch and related species, Genetica, 2004, vol. 122, pp. 227–237. doi 10.1007/s10709-004-5602-7

    Article  CAS  PubMed  Google Scholar 

  • Salina, E.A., Lim, Y.K., Badaeva, E.D., Shcherban, A.B., Adonina, I.G., Amosova, A.V., Samatadze, T.E., Vatolina, T.Yu., Zoshchuk, S.A., and Leitch, A.A., Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids, Genome, 2006a, vol. 49, pp. 1023–1035. doi 10.1139/G06-050

    Article  CAS  PubMed  Google Scholar 

  • Salina, E.A., Leonova, I.N., Efremova, T.T., and Röder, M.S., Wheat genome structure: Translocations during the course of polyploidization, Funct. Integr. Genomics, 2006b, vol. 6, pp. 71–80. doi 10.1007/s10142-005-0001-4

    Article  CAS  PubMed  Google Scholar 

  • Salina, E.A., Adonina, I.G., Badaeva, E.D., Kroupin, P.Yu., Stasyuk, A.I., Leonova, I.N., Shishkina, A.A., Divashuk, M.G., Starikova, E.V., Khuat, T.M.L., Syukov, V.V., and Karlov, G.I., A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases, Euphytica, 2015, vol. 204, no. 1, pp. 91–101. doi 10.1007/s10681-014-1344-5

    Article  CAS  Google Scholar 

  • Schneider, A., Linc, G., and Molnar-Lang, M., Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat, Plant Breed., 2003, vol. 122, pp. 396–400. doi 10.1046/j.1439-0523.2003.00891.x

    Article  CAS  Google Scholar 

  • Schneider, A., Molnar, I., and Molnar-Lang, M., Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat, Euphytica, 2008, vol. 163, pp. 1–19. doi 10.1007/s10681-007-9624-y

    Article  CAS  Google Scholar 

  • Sergeeva, E.M., Afonnikov, D.A., Koltunova, M.K., Gusev, V.D., Miroshnichenko, L.A., Vrána, J., Kubaláková, M., Poncet, C., Sourdille, P., Feuillet, C., Doležel, J., and Salina, E.A., Common wheat chromosome 5B composition analysis using low-coverage 454 sequencing the plant genome, Plant Genome, 2014, vol. 7, no. 2, pp. 1–16. doi 10.3835/10.0031

    Article  Google Scholar 

  • Shamanin, V.P., Obshchaya selektsiya i sortovedenie polevykh kul’tur: Uchebnoe posobie (General Selection and Variety Science of Field Crops: Textbook), Omsk: OmGAU, 2006.

    Google Scholar 

  • Sibikeev, S.N., Voronina, S.A., and Krupnov, V.A., Genetic control for resistance to leaf rust in wheat-Agropyron lines: Agro 139 and Agro 58, Theor. Appl. Genet., 1995, vol. 90, no. 5, pp. 618–620. doi 10.1007/BF00222124

    Article  CAS  PubMed  Google Scholar 

  • Sinigovets, M.E., Transfer of resistance to rust from wheat grass to wheat by addition and replacement of chromosomes, Genetika, 1976, vol. 12, no. 9, pp. 13–20.

    Google Scholar 

  • Sokal, R.R. and Rholf, F.J., Biometry, Freeman, W.H., Ed., New York: 1995.

  • Würschum, T., Langer, S.M., Longin, C.F.H., Korzun, V., Akhunov, E., Ebmeyer, E., Schachschneider, R., Schacht, J., Kazman, E., and Reif, J.C., Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers, Theor. Appl. Genet. Int. J. Plant Breed. Res., 2013, vol. 126, pp. 1477–1486. doi 10.1007/s00122-013-2065-1

    Article  Google Scholar 

  • Zykin, V.A., Gibridizatsiya–osnova rekombinatsionnoi selektsii rastenii: metod. rekomendatsii (Hybridization as the Basis of Recombination Plant Breeding: Methodological Recommendations), Ufa: BNIISKh, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Adonina.

Additional information

Original Russian Text © I.G. Adonina, I.N. Leonova, E.D. Badaeva, E.A. Salina, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 1, pp. 44–50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adonina, I.G., Leonova, I.N., Badaeva, E.D. et al. Genotyping of hexaploid wheat varieties from different Russian regions. Russ J Genet Appl Res 7, 6–13 (2017). https://doi.org/10.1134/S2079059717010014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717010014

Keywords

Navigation