Skip to main content
Log in

Effect of human APP gene overexpression on Drosophila melanogaster cholinergic and dopaminergic brain neurons

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

We investigated the effects of overexpression of the human APP gene on the populations of cholinergic and dopaminergic brain neurons in the fruit fly, Drosophila melanogaster. The number of cholinergic neurons in the APP expressing young flies was the same as in the control and decreased significantly with age. The number of dopaminergic neurons in the APP expressing flies was significantly lower than in the control strain by the 15th day of life. Neurodegeneration was accompanied by deficiencies in memory and cognitive abilities in the flies overexpressing full-length APP (APP-Swedish), as well as in the strains with amyloid-β peptide production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonda, J.D., Wang, X., Gustaw-Rothenberg, K., et al., Mitochondrial drugs for Alzheimer disease, Pharmaceuticals, 2009, vol. 2, pp. 287–298.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Botella, J., Bayersdorfer, F., and Schneuwly, S., Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson’s disease, Neurobiol. Dis., 2008, vol. 30, pp. 75–73.

    Article  Google Scholar 

  • Brand, A.H. and Perrimon, N., Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development, 1993, vol. 118, pp. 401–415.

    CAS  PubMed  Google Scholar 

  • Burns, J.M., Galvin, J.E., Roe, C.M., et al., The pathology of the substantia nigra in Alzheimer disease with extrapyramidal signs, Neurology, 2005, vol. 64, pp. 1397–1403.

    Article  CAS  PubMed  Google Scholar 

  • Cao, X. and Südhof, T.C., A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60, Science, 2001, vol. 293, pp. 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Cao, X. and Südhof, T.C., Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation, J. Biol. Chem., 2004, vol. 279, pp. 24601–24611.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K.H., Reese, E.A., Kim, H.-W., et al., Disturbed neurotransmitter transporter expression in Alzheimer disease brain, J. Alzheimers Dis., 2011, vol. 26, pp. 755–766.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Claasen, A.M., Guévremont, D., Mason-Parker, S.E., et al., Secreted amyloid precursor protein-alpha upregulates synaptic protein synthesis by a protein kinase G-dependent mechanism, Neur. Lett, 2009, vol. 460, pp. 92–96.

    Article  CAS  Google Scholar 

  • Davies, P., Neurotransmitter-related enzymes in senile dementia of Alzheimer type, Brain Res., 1979, vol. 171, pp. 319–327.

    Article  CAS  PubMed  Google Scholar 

  • Exley, R., McIntosh, J.M., Marks, M.J., et al., Striatal 5 nicotinic receptor subunit regulates dopamine transmission in dorsal striatum, J. Neurosci., 2012, vol. 32, pp. 2352–2356.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Francis, P.T., Palmer, A.M., Snape, M., and Wilcock, G.K., The cholinergic hypothesis of Alzheimer’s disease: a review of progress, J. Neurol. Neurosurg. Psychiatry, 1999, vol. 66, pp. 137–147.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosal, K., Vogt, D.L., Liang, M., et al., Alzheimer’s disease-like pathological features in transgenic mice expressing the app intracellular domain, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 18367–18372.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guan, Z.Z., Zhang, X., Ravid, R., and Nordberg, A., Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer’s disease, J. Neurochem., 2000, vol. 74, pp. 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, J. and Selkoe, D.J., The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. An updated summary of the amyloid hypothesis, Science, 2002, vol. 297, pp. 353–356.

    Article  CAS  PubMed  Google Scholar 

  • Iijima-Ando, K. and Iijima, K., Transgenic Drosophila models of Alzheimer’s disease and tauopathies, Brain Struct. Funct., 2010, vol. 214, pp. 245–262.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kar, S., Slowikowski, S.P., Westaway, D., and Mount, H.T., Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease, J. Psychiatry Neurosci., 2004, vol. 29, pp. 427–468.

    PubMed Central  PubMed  Google Scholar 

  • Kazee, A.M., Cox, C., and Richfield, E.K., Substantia nigra lesions in Alzheimer disease and normal aging, Alzheimer Dis. Assoc. Disord., 1995, vol. 9, pp. 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H., Kim, E., Lee, J., et al., C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3 expression, FASEB J., 2003, vol. 17, pp. 1951–1953.

    CAS  PubMed  Google Scholar 

  • Li, Y., Liu, T., Peng, Y., et al., Specific functions of Drosophila amyloid precursor-like protein in the development of nervous system and nonneural tissues, J. Neurobiol., 2004, vol. 61, pp. 343–58.

    Article  CAS  PubMed  Google Scholar 

  • Luo, L., Tully, T., and White, K., Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for appl gene, Neuron, 1992, vol. 9, pp. 595–605.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M.M., Mufson, E.J., Wainer, B.H., and Levey, A.I., Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (ch1-ch6), Neuroscience, 1983, vol. 10, pp. 1185–1201.

    Article  CAS  PubMed  Google Scholar 

  • Mohandas, E., Rajmohan, V., and Raghunath, B., Neurobiology of Alzheimer’s disease, Indian J. Psychiatry, 2009, vol. 51, pp. 55–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Müller, T., Concannon, C.G., Ward, M.W., et al., Modulation of gene expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD), Biol. Cell., 2007, vol. 18, pp. 201–210.

    Google Scholar 

  • Müller, U.C. and Zheng, H., Physiological functions of app family proteins, Cold Spring Harb. Perspect. Med., 2012, vol. 2, p. a006288.

    Article  PubMed Central  PubMed  Google Scholar 

  • Perez, S.E., Lazarov, O., Koprich, J.B., et al., Nigrostriatal dysfunction in familial Alzheimer’s disease-linked APPswe/PS1-E9 transgenic mice, J. Neurosci., 2005, vol. 25, pp. 10220–10229.

    Article  CAS  PubMed  Google Scholar 

  • Perry, E.K., Morris, C.M., Court, J.A., et al., Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology, Neuroscience, 1995, vol. 64, pp. 385–395.

    Article  CAS  PubMed  Google Scholar 

  • Pimplikar, S.W., Nixon, R.A., Robakis, N.K., et al., Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis, J. Neurosci., 2010, vol. 30, pp. 14946–14954.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarantseva, S., Timoshenko, S., Bolshakova, O., et al., Apolipoprotein E-mimetics inhibit neurodegeneration and restore cognitive functions in a transgenic Drosophila model of Alzheimer’s disease, PloS One, 2009, vol. 4, p. e8191.

    Article  PubMed Central  PubMed  Google Scholar 

  • Saura, C.A., Choi, S.-U., Beglopoulos, V., et al., Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration, Neuron, 2004, vol. 42, pp. 23–36.

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer, E.L. and Gattaz, W.F., Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme, Psychopharmacology, 2008, vol. 198, pp. 1–27.

    Article  CAS  PubMed  Google Scholar 

  • Somnicki, L.P. and Les-niak, W., A putative role of the amyloid precursor protein intracellular domain (AICD) in transcription, Acta Neurobiol. Exp. (Wars.), 2008, vol. 68, pp. 219–228.

    Google Scholar 

  • Stokin, G.B., Almenar-Queralt, A., Gunawardena, S., et al., Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides, Hum. Mol. Genet., 2008, vol. 17, pp. 3474–3486.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun, C., Ou, X., Farley, J.M., Stockmeier, C., et al., Allopregnanolone increases the number of dopaminergic neurons in substantia nigra of a triple transgenic mouse model of Alzheimer’s disease, Curr. Alzheimer Res., 2012, vol. 9, pp. 473–480.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thinakaran, G. and Koo, H.E., Amyloid precursor protein: trafficking, processing and function, J. Biol. Chem., 2008, vol. 283, pp. 296–304.

    Article  Google Scholar 

  • Tiraboschi, P., Hansen, L.A., Alford, M., et al., The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease, Neurology, 2000, vol. 55, pp. 1278–1283.

    Article  CAS  PubMed  Google Scholar 

  • Torroja, L., Packard, M., Gorczyca, M., et al., Drosophila β-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction, J. Neurosci., 1999, vol. 15, pp. 7793–7803.

    Google Scholar 

  • Tully, T. and Quinn, W., Classical conditioning and retention in normal and mutant Drosophila melanogaster, J. Comp. Physiol., 1985, vol. P, pp. 263–277.

    Article  Google Scholar 

  • Walsh, D.M. and Selkoe, D.J., Deciphering the molecular basis of memory failure in Alzheimer’s disease, Neuron, 2004, vol. 44, pp. 181–193.

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse, R.J., Price, D.L., Struble, R.G., et al., Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science, 1982, vol. 215, pp. 1237–1239.

    Article  CAS  PubMed  Google Scholar 

  • Yagi, Y., Tomita, S., Nakamura, M., et al., Overexpression of human amyloid precursor protein in Drosophila, Mol. Cell. Biol. Res. Comm., 2000, vol. 157, pp. 263–277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Bolshakova.

Additional information

Original Russian Text © O.I. Bolshakova, A.A. Zhuk, D.I. Rodin, G.A. Kislik, S.V. Sarantseva, 2013, published in Ekologicheskaya Genetika, 2013, Vol. 11, No. 1, pp. 23–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolshakova, O.I., Zhuk, A.A., Rodin, D.I. et al. Effect of human APP gene overexpression on Drosophila melanogaster cholinergic and dopaminergic brain neurons. Russ J Genet Appl Res 4, 113–121 (2014). https://doi.org/10.1134/S2079059714020026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059714020026

Keywords

Navigation