Skip to main content
Log in

On the origin of synaptonemal complex proteins. Search for related proteins in proteomes of algae, lower fungi, mosses, and protozoa

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

A search for proteins similar to known synaptonemal complex (SC) proteins of seven higher eukaryote species, from budding yeast to mice (which are widely used as models for the study of meiosis), was conducted in the proteomes of algae, mosses, lower fungi, and Protozoa, using bioinformatics methods. It was established that proteins containing the HORMA domain have the largest similarity with the SC proteins of model organisms in proteomes of green and brown algae, mosses, and a number of lower fungi, as well as Euglenozoa, Sporozoa, and some other unicellular eukaryotes. They are close to the proteins of the lateral elements of the SC of higher eukaryotes that also carry the HORMA domain. This domain recognizes the state of chromatin and recruits other proteins for SC construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anuradha, S. and Muniyappa, K., Molecular aspects of meiotic chromosome synapsis and recombination, Progr. Nucl. Acid Res. Mol. Biol., 2005, vol. 79, pp. 49–132.

    Article  CAS  Google Scholar 

  • Bogdanov, Yu.F., Variation and evolution of meiosis, Russ. J. Genet., 2003, vol. 39, no. 4, pp. 363–381.

    Article  CAS  Google Scholar 

  • Bogdanov, Yu.F., Similarity of domain organization of proteins in phylogenetically distant organisms as a basis of meiosis conservatism, Russ. J. Dev. Biol., 2004, vol. 35, no. 6, pp. 337–344.

    Article  CAS  Google Scholar 

  • Bogdanov, Y.F., Grishaeva, T.M., and Dadashev, S.Y., Similarity of the domain structure of proteins as a basis for the conservation of meiosis, Int. Rev. Cytol., 2007, vol. 257, pp. 83–142.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov, Yu.F., Grishaeva, T.M., Karpova, O.I., and Penkina, M.V., The role of specific proteins in the evolution of meiosis, in Sovremennye problemy biologicheskoi evolyutsii: Tr. konf. K 100-letiyu Gos. Darvinovskogo muzeya. 17–20 sentyabrya 2007, Moskva (Modern Problems of Biological Evolution, Proc. Conf. Dedicated to the 100th Anniversary of the State Darwin Museum, September 17–20, 2007, Moscow), Moscow: Izd. GDM, 2008, pp. 7–30.

    Google Scholar 

  • Bogdanov, Yu.F., The evolution of meiosis of unicellular and multicellular eukaryotes. Aromorphosis at the cellular level, Zh. Obshch. Biol., 2008, vol. 69, no. 2, pp. 4102–117.

    Google Scholar 

  • Egel, R., On the origin of meiosis in eukaryotic evolution: coevolution of meiosis and mitosis from feeble beginnings, in Genome Dynamics and Stability, Vol. 3: Recombination and Meiosis, Egel, R. and Lankenau, D.-H., Eds., Berlin: Springer-Verlag, 2007, pp. 249–288.

  • Grishaeva, T.M. and Zakharov, I.A., Comparison of eukaryotic nuclear proteins with prokaryotic proteins: implications for eukaryogenesis, Curr. Topics Genet., 2012, vol. 5, pp. 31–36.

    CAS  Google Scholar 

  • Heyting, C., Synaptonemal complex: structure and function, Curr. Opin. Cell Biol., 1996, vol. 8, pp. 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, T., SMC proteins and chromosome mechanics: from bacteria to humans, Phil. Trans. R. Soc. B, 2005, vol. 360, pp. 507–514.

    Article  PubMed  CAS  Google Scholar 

  • King, N., Westbrook, M.J., Young, S.L., et al., The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans, Nature, 2008, vol. 451, pp. 783–788.

    Article  PubMed  CAS  Google Scholar 

  • Li, W. and Zheng, G.-Ch., A resurgent phoenix-a hypothesis for the origin of meiosis, Life, 2002, vol. 54, pp. 9–12.

    PubMed  Google Scholar 

  • Loidl, J., S. pombe linear elements: the modest cousins of synaptonemal complexes, Chromosoma, 2006, vol. 115, pp. 260–271.

    Article  PubMed  Google Scholar 

  • Maguire, M.P., Evolution of meiosis, J. Theor. Biol., 1992, vol. 154, pp. 43–55.

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen, R.L.J., Offenberg, H.H., Dietrich, A.J.J., et al., A coiled-coil related protein specific for the synapsed regions of meiotic prophase chromosomes, EMBO J., 1992, vol. 11, pp. 5091–5100.

    PubMed  CAS  Google Scholar 

  • Page, S.L. and Hawley, R.S., The genetics and molecular biology of the synaptonemal complex, Annu. Rev. Cell Dev. Biol., 2004, vol. 20, pp. 525–558.

    Article  PubMed  CAS  Google Scholar 

  • Penkina, M.V., Karpova, O.I., and Bogdanov, Yu.F., Synaptonemal complex proteins: specific proteins of meiotic chromosomes, Mol. Biol. (Moscow), 2002, vol. 36, no. 3, pp. 304–313.

    Article  CAS  Google Scholar 

  • Revenkova, E. and Jessberger, R., Shaping meiotic prophase chromosomes: cohesins and synaptonemal complex proteins, Chromosoma, 2006, vol. 115, pp. 235–240.

    Article  PubMed  CAS  Google Scholar 

  • Zakharov, I.A., Dadashev, S.Ya., and Grishaeva, T.M., Orthologs of meiotic proteins in prokaryotic proteomes, Dokl. Akad. Nauk, 2010, vol. 435, no. 5, pp. 327–329.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Grishaeva.

Additional information

Original Russian Text © T.M. Grishaeva, Yu.F. Bogdanov, 2013, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2013, Vol. 17, No. 2, pp. 335–342.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grishaeva, T.M., Bogdanov, Y.F. On the origin of synaptonemal complex proteins. Search for related proteins in proteomes of algae, lower fungi, mosses, and protozoa. Russ J Genet Appl Res 3, 481–486 (2013). https://doi.org/10.1134/S2079059713060038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059713060038

Keywords

Navigation