Skip to main content
Log in

Shaping meiotic prophase chromosomes: cohesins and synaptonemal complex proteins

  • Mini-Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Recent progress in elucidating the function of synaptonemal complex (SC) proteins and of cohesins in meiocytes made possible, in particular, through the analysis of mice deficient in SC or cohesin proteins has significantly enriched our understanding of how meiotic chromosome architecture is determined. Cohesins and the SC proteins act together in generating the characteristic axis-loop structure of meiotic chromosomes, their pairing into bivalents, their ability to recombine, and to be properly segregated. This minireview attempts to summarize the current knowledge with a focus on higher eukaryotic systems and to ask questions that ought to be addressed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson LK, Royer SM, Page SL, McKim KS, Lai A, Lilly MA, Hawley RS (2005) Juxtaposition of C(2)M and the transverse filament protein C(3)G within the central region of Drosophila synaptonemal complex. Proc Natl Acad Sci U S A 102:4482–4487

    Article  PubMed  CAS  Google Scholar 

  • Bannister LA, Reinholdt LG, Munroe RJ, Schimenti JC (2004) Positional cloning and characterization of mouse mei8, a disrupted allele of the meiotic cohesin Rec8. Genesis 40:184–194

    Article  PubMed  CAS  Google Scholar 

  • Chuma S, Nakatsuji N (2001) Autonomous transition into meiosis of mouse fetal germ cells in vitro and its inhibition by gp130-mediated signaling. Dev Biol 229:468–479

    Article  PubMed  CAS  Google Scholar 

  • de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M, Yuan L, Liu JG, van Zeeland AA, Heyting C, Pastink A (2005) Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev 19:1376–1389

    Article  PubMed  Google Scholar 

  • Eijpe M, Heyting C, Gross B, Jessberger R (2000) Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J Cell Sci 113(Pt 4):673–682

    PubMed  CAS  Google Scholar 

  • Eijpe M, Offenberg H, Jessberger R, Revenkova E, Heyting C (2003) Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J Cell Biol 160:657–670

    Article  PubMed  CAS  Google Scholar 

  • Firooznia A, Revenkova E, Jessberger R (2005) From the XXVII North American testis workshop: the function of SMC and other cohesin proteins in meiosis. J Androl 26:1–10

    PubMed  CAS  Google Scholar 

  • Hagstrom KA, Meyer BJ (2003) Condensin and cohesin: more than chromosome compactor and glue. Nat Rev Genet 4:520–534

    Article  PubMed  CAS  Google Scholar 

  • Heidmann D, Horn S, Heidmann S, Schleiffer A, Nasmyth K, Lehner CF (2004) The Drosophila meiotic kleisin C(2)M functions before the meiotic divisions. Chromosoma 113:177–187

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (2005) SMC proteins and chromosome mechanics: from bacteria to humans. Philos Trans R Soc Lond B Biol Sci 360:507–514

    Article  PubMed  CAS  Google Scholar 

  • Hodges CA, Revenkova E, Jessberger R, Hassold TJ, Hunt PA (2005) SMC1beta-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat Genet 37:1351–1355

    Article  PubMed  CAS  Google Scholar 

  • Jessberger R (2002) The many functions of SMC proteins in chromosome dynamics. Nat Rev Mol Cell Biol 3:767–778

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Krasieva TB, LaMorte V, Taylor AM, Yokomori K (2002) Specific recruitment of human cohesin to laser-induced DNA damage. J Biol Chem 277:45149–45153

    Article  PubMed  CAS  Google Scholar 

  • Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K, Nasmyth K (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103

    Article  PubMed  CAS  Google Scholar 

  • Kolas NK, Yuan L, Hoog C, Heng HH, Marcon E, Moens PB (2004) Male mouse meiotic chromosome cores deficient in structural proteins SYCP3 and SYCP2 align by homology but fail to synapse and have possible impaired specificity of chromatin loop attachment. Cytogenet Genome Res 105:182–188

    Article  PubMed  CAS  Google Scholar 

  • Kouznetsova A, Novak I, Jessberger R, Hoog C (2005) SYCP2 and SYCP3 are required for cohesin core integrity at diplotene but not for centromere cohesion at the first meiotic division. J Cell Sci 118:2271–2278

    Article  PubMed  CAS  Google Scholar 

  • Liebe B, Alsheimer M, Hoog C, Benavente R, Scherthan H (2004) Telomere attachment, meiotic chromosome condensation, pairing, and bouquet stage duration are modified in spermatocytes lacking axial elements. Mol Biol Cell 15:827–837

    Article  PubMed  CAS  Google Scholar 

  • Manheim EA, McKim KS (2003) The synaptonemal complex component C(2)M regulates meiotic crossing over in Drosophila. Curr Biol 13:276–285

    Article  PubMed  CAS  Google Scholar 

  • Parra MT, Viera A, Gomez R, Page J, Benavente R, Santos JL, Rufas JS, Suja JA (2004) Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J Cell Sci 117:1221–1234

    Article  PubMed  CAS  Google Scholar 

  • Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, Loidl J (2001) A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15:1349–1360

    Article  PubMed  CAS  Google Scholar 

  • Pelttari J, Hoja MR, Yuan L, Liu JG, Brundell E, Moens P, Santucci-Darmanin S, Jessberger R, Barbero JL, Heyting C, Hoog C (2001) A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol Cell Biol 21:5667–5677

    Article  PubMed  CAS  Google Scholar 

  • Prieto I, Suja JA, Pezzi N, Kremer L, Martinez AC, Rufas JS, Barbero JL (2001) Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat Cell Biol 3:761–766

    Article  PubMed  CAS  Google Scholar 

  • Prieto I, Pezzi N, Buesa JM, Kremer L, Barthelemy I, Carreiro C, Roncal F, Martinez A, Gomez L, Fernandez R, Martinez AC, Barbero JL (2002) STAG2 and Rad21 mammalian mitotic cohesins are implicated in meiosis. EMBO Rep 3:543–550

    Article  PubMed  CAS  Google Scholar 

  • Revenkova E, Jessberger R (2005) Keeping sister chromatids together: cohesins in meiosis. Reproduction 130:783–790

    Article  PubMed  CAS  Google Scholar 

  • Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R (2001) Novel meiosis-specific isoform of mammalian SMC1. Mol Cell Biol 21:6984–6998

    Article  PubMed  CAS  Google Scholar 

  • Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA, Liebe B, Scherthan H, Jessberger R (2004) Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol 6:555–562

    Article  PubMed  CAS  Google Scholar 

  • Strom L, Sjogren C (2005) DNA damage-induced cohesion. Cell Cycle 4:536–539

    PubMed  Google Scholar 

  • Strom L, Lindroos HB, Shirahige K, Sjogren C (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16:1003–1015

    Article  PubMed  Google Scholar 

  • Trelles-Sticken E, Adelfalk C, Loidl J, Scherthan H (2005) Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J Cell Biol 170:213–223

    Article  PubMed  CAS  Google Scholar 

  • Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16:991–1002

    Article  PubMed  Google Scholar 

  • Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400:461–464

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Beasley M, Verschoor S, Inselman A, Handel MA, McKay MJ (2004) A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO Rep 5:378–384

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Beasley MD, Warren WD, van der Horst GT, McKay MJ (2005) Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 8:949–961

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Liu JG, Hoja MR, Wilbertz J, Nordqvist K, Hoog C (2002) Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296:1115–1118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory is supported by grants from the NIH and from the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Jessberger.

Additional information

Communicated by R. Benavente

The synaptonemal complex—50 years

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revenkova, E., Jessberger, R. Shaping meiotic prophase chromosomes: cohesins and synaptonemal complex proteins. Chromosoma 115, 235–240 (2006). https://doi.org/10.1007/s00412-006-0060-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0060-x

Keywords

Navigation