Skip to main content
Log in

Identification of genes encoding potentially amyloidogenic proteins that take part in the regulation of nonsense suppression in yeast Saccharomyces cerevisiae

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Previously, we demonstrated that SUP35 N-terminal deletion creates a specific genetic back-ground permitting the identification of novel genes and epigenetic determinants controlling nonsense suppression. In the present study, using a genomic screen, we found three genes encoding potentially amyloidogenic proteins, whose overexpression affects nonsense suppression in the strain producing chimeric Aβ-Sup35MC protein on the background of SUP35 deletion encoding releasing factor eRF3. These genes, NAB2, NAB3, and VTS1, were found to participate in the regulation of nonsense suppression in yeast S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberti, S., Halfmann, R., King, O., et al., A Systematic Survey Identifies Prions and Illuminates Sequence Features of Prionogenic Proteins, Cell, 2009, vol. 137, pp. 146–158.

    Article  PubMed  CAS  Google Scholar 

  • Aviv, T., Lin, Z., Lau, S., et al., The RNA-Binding SAM Domain of Smaug Defines a New Family of Posttranscriptional Regulators, Nat. Struct. Biol., 2003, vol. 10, pp. 614–621.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.C. and Lindquist, S., A Heritable Switch in Carbon Source Utilization Driven by an Unusual Yeast Prion, Genes Dev., 2009, vol. 23, pp. 2320–2332.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, N.K., Wilson, S.M., and Steinmetz, E.J., A Yeast Heterogeneous Nuclear Ribonucleoprotein Complex Associated with RNA Polymerase II, Genetics, 2000, vol. 154, pp. 557–571.

    PubMed  CAS  Google Scholar 

  • Derkatch, I.L., Bradley, M.E., Zhou, P., et al., Genetic and Environmental Factors Affecting the de novo Appearance of the [PSI+] Prion in Saccharomyces cerevisiae, Genetics, 1997, vol. 147, pp. 507–519.

    PubMed  CAS  Google Scholar 

  • Dilcher, M., Kohler, B., and von Mollard, G.F., Genetic Interactions with the Yeast Q-SNARE VTI1 Reveal Novel Functions for the R-SNARE YKT6, J. Biol. Chem., 2001, vol. 276, pp. 34537–34544.

    Article  PubMed  CAS  Google Scholar 

  • Du, Z., Park, K.W., Yu, H., et al., Newly Identified Prion Linked to the Chromatin-Remodeling Factor Swi1 in Saccharomyces cerevisiae, Nat. Genet., 2008, vol. 40, pp. 460–465.

    Article  PubMed  CAS  Google Scholar 

  • Fasken, M.B., Stewart, M., and Corbett, A.H., Functional Significance of the Interaction between the mRNA-Binding Protein, Nab2, and the Nuclear Pore-Associated Protein, Mlp1, in mRNA Export, J. Biol. Chem., 2008, vol. 283, pp. 27130–27143.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan, D., DNA Cloning: A Practical Approach, IRL Press, 1985.

  • Harrison, P.M. and Gerstein, M., A Method to Assess Compositional Bias in Biological Sequences and Its Application to Prion-Like Glutamine/Asparagine-Rich Domains in Eukaryotic Proteomes, Genome Biol., 2003, vol. 4, p. 40.

    Article  Google Scholar 

  • Hosoda, N., Kobayashi, T., Uchida, N., et al., Translation Termination Factor ERF3 Mediates MRNA Decay through the Regulation of Deadenylation, J. Biol. Chem., 2003, vol. 278, pp. 38287–38291.

    Article  PubMed  CAS  Google Scholar 

  • Inge-Vechtomov, S.G., Reversions to Prototrophicity in Adenine-Requiring Yeast, Vestn. Leningr. Univ., Ser. 2, 1964, no. 9, pp. 112–117.

  • Ivanov, M.S., Ratchenko, E.A., and Mironova, L.N., The Protein Complex Ppz1p/Hal3p and Nonsense Suppression Efficiency in the Yeast Saccharomyces cerevisiae, Mol. Biol. (Moscow), 2010, vol. 44, pp. 1018–1026.

    CAS  Google Scholar 

  • Kaiser, C., Michaelis, S., and Mitchell, A., Methods in Yeast Genetics, New York: Cold Spring Harbor Lab. Press, 1994.

    Google Scholar 

  • Krogan, N.J., Cagney, G., Yu, H., et al., Global Landscape of Protein Complexes in the Yeast Saccharomyces cerevisiae, Nature, 2006, vol. 440, pp. 637–643.

    Article  PubMed  CAS  Google Scholar 

  • Ong, W., Ibrahim, M., Town, M., and Johnson, J., Functional Differences among the Six Saccharomyces cerevisiae tRNATrp Genes, Yeast, 1997, vol. 13, pp. 1357–1362.

    Article  PubMed  CAS  Google Scholar 

  • Ono, B., Yoshida, R., Kamiya, K., and Sugimoto, T., Suppression of Termination Mutations Caused by Defects of the NMD Machinery in Saccharomyces cerevisiae, Genes Genet. Syst., 2005, vol. 80, pp. 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Osherovich, L.Z. and Weissman, J.S., Multiple Gln/Asn-Rich Prion Domains Confer Susceptibility to Induction of the Yeast [PSI+] Prion, Cell, 2001, vol. 106, pp. 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Patel, B.K., Gavin-Smyth, J., and Liebman, S.W., The Yeast Global Transcriptional Co-Repressor Protein Cyc8 Can Propagate as a Prion, Nat. Cell. Biol., 2009, vol. 11, pp. 344–349.

    Article  PubMed  CAS  Google Scholar 

  • Rendl, L., Bieman, M., and Smibert, C., S. cerevisiae Vts1p Induces Deadenylation-Dependent Transcript Degradation and Interacts with the Ccr4p-Pop2p-Not Deadenylase Complex, RNA, 2008, vol. 14, pp. 1328–1336.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, B.T. and Wickner, R.B., Heritable Activity: A Prion that Propagates by Covalent Autoactivation, Genes Dev., 2003, vol. 17, pp. 2083–2087.

    Article  PubMed  CAS  Google Scholar 

  • Rogoza, T., Goginashvili, A., Rodionova, S., et al., Non-Mendelian Determinant [ISP+] in Yeast Is a Nuclear-Residing Prion Form of the Global Transcriptional Regulator Sfp1, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 10573–10577.

    Article  PubMed  CAS  Google Scholar 

  • Rubel, A.A., Saifitdinova, A.F., Lada, A.G., et al., Yeast Chaperone Hsp104 Controls Gene Expression at the Posttranscriptional Level, Mol. Biol. (Moscow), 2008, vol. 42, no. 1, pp. 10–116.

    Article  Google Scholar 

  • Saifitdinova, A.F., Nizhnikov, A.A., Lada, A.G., et al., [NSI+]: A Novel Non-Mendelian Suppressor Determinant in Saccharomyces cerevisiae, Curr. Genet., 2010, vol. 56, pp. 467–478.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning. A Laboratory Manual, New York: Cold Spring Harbor Lab. Press, 1989.

    Google Scholar 

  • Serio, T.R., Cashikar, A.G., Kowal, A., et al., Nucleated Conformational Conversion and the Replication of Conformational Information by a Prion Determinant, Science, 2000, vol. 289, pp. 1317–1321.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, F., Fink, G.R., and Hancks, J.B., Methods in Yeast Genetics, New York: Cold Spring Harbor Lab. Press, 1986.

  • Urakov, V.N., Valouev, I.A., Kochneva-Pervukhova, N.V., et al., N-Terminal Region of Saccharomyces cerevisiae eRF3 Is Essential for the Functioning of the eRF1/eRF3 Complex Beyond Translation Termination, BMC. Mol. Biol., 2006, vol. 7, p. E34.

    Article  Google Scholar 

  • Van Dyke, N., Pickering, B.F., and Van Dyke, M.W., Stm1p Alters the Ribosome Association of Eukaryotic Elongation Factor 3 and Affects Translation Elongation, Nucleic Acids Res., 2009, vol. 37, pp. 6116–6125.

    Article  PubMed  Google Scholar 

  • Weiss, W.A., Edelman, I., Culbertson, M.R., and Friedberg, E.C., Physiological Levels of Normal tRNA(CAGGln) Can Effect Partial Suppression of Amber Mutations in the Yeast Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 8031–8034.

    Article  PubMed  CAS  Google Scholar 

  • Wickner, R.B., [URE3] as an Altered Ure2 Protein: Evidence for a Prion Analog in Saccharomyces cerevisiae, Science, 1994, vol. 264, pp. 566–569.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., Yang, H., and Tien, P., In vitro Self-Propagation of Recombinant PrPSc-Like Conformation Generated in the Yeast Cytoplasm, FEBS Lett., 2006, vol. 580, pp. 4231–4235.

    Article  PubMed  CAS  Google Scholar 

  • Zakharov, I.A., Kozhin, S.A., Kozhina, T.N., and Fedorova, I.V., Sbornik metodik po genetike drozhzheisakharomitsetov (Collected Methods on Genetics of the Yeast Saccharomyces), Leningrad: Nauka, 1984.

    Google Scholar 

  • Zhouravleva, G., Frolova, L., Le Goff, X., et al., Termination of Translation in Eukaryotes Is Governed by Two Interacting Polypeptide Chain Release Factors, eRF1 and eRF3, EMBO J., 1995, vol. 14, pp. 4065–4072.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Nizhnikov, Z.M. Magomedova, A.F. Saifitdinova, S.G. Inge-Vechtomov, A.P. Galkin, 2011, published in Ekologicheskaya Genetika, 2011, Vol. 9, No. 4, pp. 79–86.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nizhnikov, A.A., Magomedova, Z.M., Saifitdinova, A.F. et al. Identification of genes encoding potentially amyloidogenic proteins that take part in the regulation of nonsense suppression in yeast Saccharomyces cerevisiae . Russ J Genet Appl Res 2, 398–404 (2012). https://doi.org/10.1134/S2079059712050048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059712050048

Keywords

Navigation