Skip to main content
Log in

A model of the gene network for flowering time regulation in winter wheat and barley

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Transition from the vegetative to the reproductive stage of plant development depends on photoperiod and vernalization. A simple logical model of a gene network that regulates flowering time of winter wheat is suggested. In winter varieties of cereals, vernalization sensitivity is controlled by the VRN1, VRN2 and VRN3 genes. After vernalization, the VRN1 gene product suppresses the VRN2 gene, which encodes a repressor of flowering. As a result, the level of expression of VRN3 increases and stimulates a further increase in the level of transcription of the VRN1 gene. The genes form a positive-feedback loop that enhances the transcription of VRN1 to the level that is required for the initiation of flowering. Under long-day conditions, the expression of VRN3 is enhanced by the PPD1 and CO2 gene products, which determine sensitivity to photoperiod. Seasonal changes in day length are transmitted through photoreceptors to a circadian clock that modulates flowering time. Data on barley and wheat genes that control sensitivity to vernalization and photoperiod are integrated into the gene network. Using a synchronous Boolean model, the dynamics of the gene network were reproduced. An extended model of the gene network can be used to check the consistency of the experimental data with proposals of new hypotheses on the interactions of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananko, E.A., Podkolodny, N.L., Stepanenko, I.L., et al., GeneNet in 2005, Nucleic Acids Res., 2005, vol. 33, pp.D425–D427.

    Article  PubMed  CAS  Google Scholar 

  • Casao, M.C., Igartua, E., Karsai, I., et al., Expression Analysis of Vernalization and Day-Length Response Genes in Barley (Hordeum vulgare L.) Indicates that VRNH2 Is a Repressor of PPDH2 (HvFT3) under Long Days, J. Exp. Bot., 2011, vol. 62, pp. 1939–1949.

    Article  PubMed  CAS  Google Scholar 

  • Corbesier, L., Vincent, C., Jang, S.H., et al., FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis, Science (Washington, D.C.), 2007, vol. 316, pp. 1030–1033.

    Article  CAS  Google Scholar 

  • Davidich, M. and Bornholdt, S., Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast, PLoS ONE, 2008, vol. 3, p. e1672.

    Article  PubMed  Google Scholar 

  • Distelfeld, A., Li, C., and Dubcovsky, J., Regulation of Flowering in Temperate Cereals, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 178–184.

    Article  PubMed  CAS  Google Scholar 

  • Distelfeld, A. and Dubcovsky, J., Characterization of the Maintained Vegetative Phase Deletions from Diploid Wheat and Their Effect on VRN2 and FT Transcript Levels, Mol. Genet. Genomics, 2010, vol. 283, pp. 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Greenup, A., Peacock, W.J., Dennis, E.S., and Trevaskis, B., The Molecular Biology of Seasonal Flowering-Responses in Arabidopsis and the Cereals, Ann. Bot., 2009, vol. 103, pp. 1165–1172.

    Article  PubMed  CAS  Google Scholar 

  • Greenup, A.G., Sasani, S., Oliver, S.N., et al., ODDSOC2 Is a MADS Box Floral Repressor that Is Down-Regulated by Vernalization in Temperate Cereals, Plant Physiol., 2010, vol. 153, pp. 1062–1073.

    Article  PubMed  CAS  Google Scholar 

  • Greenup, A.G., Sasani, S., Oliver, S.N., et al., Transcriptome Analysis of the Vernalization Response in Barley (Hordeum vulgare) Seedlings, PLoS One, 2011, vol. 6, p. e17900.

    Article  PubMed  CAS  Google Scholar 

  • Hemming, M.N., Peacock, W.J., Dennis, E.S., and Trevaskis, B., Low-Temperature and Day-Length Cues Are Integrated to Regulate FLOWERING LOCUS T in Barley, Plant Physiol., 2008, vol. 147, pp. 355–366.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, J.A., Bailey, P.C., and Laurie, D.A., Comparative Genomics of Flowering Time Pathways Using Brachypodium distachyon as a Model for the Temperate Grasses, PLoS One, 2010, vol. 19, p. e10065.

    Article  Google Scholar 

  • Imaizumi, T., Arabidopsis Circadian Clock and Photoperiodism: Time to Think about Location, Curr. Opin. Plant Biol., 2010, vol. 13, pp. 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Kane, N.A., Agharbaoui, Z., Diallo, A.O., et al., TaVRT2 Represses Transcription of the Wheat Vernalization Gene TaVRN1, Plant J., 2007, vol. 51, pp. 670–680.

    Article  PubMed  CAS  Google Scholar 

  • Kauffman, S., Peterson, C., Samuelsson, B., et al., Genetic Networks with Canalyzing Boolean Rules Are Always Stable, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 17102–17107.

    Article  PubMed  CAS  Google Scholar 

  • Li, C. and Dubcovsky, J., Wheat FT Protein Regulates VRN1 Transcription through Interactions with FDL2, Plant J., 2008, vol. 55, pp. 543–554.

    Article  PubMed  CAS  Google Scholar 

  • Li, C., Distelfeld, A., Comis, A., and Dubcovsky, J., Wheat Flowering Repressor VRN2 and Promoter CO2 Compete for Interactions with NUCLEAR FACTOR-Y Complexes, Plant J., 2011, vol. 67, pp. 763–773.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza, L., Thieffry, D., and Alvarez-Buylla, E., Genetic Control of Flower Morphogenesis in Arabidopsis thaliana: A Logical Analysis, Bioinformatics, 1999, vol. 15, pp. 593–606.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, S.N., Finnegan, E.J., Dennis, E.S., et al., Vernalization-Induced Flowering in Cereals Is Associated with Changes in Histone Methylation at the VERNALIZATION1 Gene, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 8386–8391.

    Article  PubMed  CAS  Google Scholar 

  • Papin, J.A., Hunter, T., Palsson, B.O., and Subramaniam, S., Reconstruction of Cellular Signalling Networks and Analysis of Their Properties, Nat. Rev. Mol. Cell Biol., 2005, vol. 6, pp. 99–111.

    Article  PubMed  CAS  Google Scholar 

  • Sawa, M., Nusinow, D.A., Kay, S.A., and Imaizumi, T., FKF1 and GIGANTEa Complex Formation Is Required for Day-Length Measurement in Arabidopsis, Science (Washington, D.C.), 2007, vol. 318, pp. 261–265.

    Article  CAS  Google Scholar 

  • Shimada, S., Ogawa, T., Kitagawa, S., et al., A Genetic Network of Flowering-Time Genes in Wheat Leaves, in Which an APETALA1/FRUITFULL-Like Gene, VRN1, Is Upstream of FLOWERING LOCUS T, Plant J., 2009, vol. 58, pp. 668–681.

    Article  PubMed  CAS  Google Scholar 

  • Smirnova, O.G., Stepanenko, I.L., and Shumny, V.K., The Role of the COP1, SPA, and PIF Proteins in Plant Photomorphogenesis, Biol. Bull. Rev., 2011, vol. 1, no. 4, pp. 314–324.

    Article  Google Scholar 

  • Song, Y.H., Ito, S., and Imaizumi, T., Similarities in the Circadian Clock and Photoperiodism in Plants, Curr. Opin. Plant Biol., 2010, vol. 13, pp. 594–603.

    Article  PubMed  Google Scholar 

  • Stephenson, T.J., McIntyre, C.L., Collet, C., et al., Genome-Wide Identification and Expression Analysis of the NF-Y Family of Transcription Factors in Triticum aestivum, Plant Mol. Biol., 2007, vol. 65, pp. 77–92.

    Article  PubMed  CAS  Google Scholar 

  • Tiwari, S.B., Shen, Y., Chang, H.C., et al., The Flowering Time Regulator CONSTANS Is Recruited to the FLOWERING LOCUS T Promoter via a Unique cis-Element, New Phytol., 2010, vol. 187, pp. 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis, B., Hemming, M.N., Peacock, W.J., and Dennis, E.S., HvVRN2 Responds to Day Length, Whereas HvVRN1 Is Regulated by Vernalization and Developmental Status, Plant Physiol., 2006, vol. 140, pp. 1397–1405.

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis, B., Hemming, M.N., Dennis, E.S., et al., The Molecular Basis of Vernalization-Induced Flowering in Cereals, Trends Plant Sci., 2007, vol. 12, pp. 352–357.

    Article  PubMed  CAS  Google Scholar 

  • Turner, A., Beales, J., Faure, S., et al., The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley, Science (Washington, D.C.), 2005, vol. 310, pp. 1031–1034.

    Article  CAS  Google Scholar 

  • Yan, L., Loukoianov, A., Tranquilli, G., et al., Positional Cloning of Wheat Vernalization Gene VRN1, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 6263–6268.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Loukoianov, A., Blechl, A., et al., The Wheat VRN2 Gene Is a Flowering Repressor Down-Regulated by Vernalization, Science (Washington, D.C.), 2004, vol. 303.

  • Yan, L., Fu, D., Li, C., Blechl, A., et al., The Wheat and Barley Vernalization Gene VRN3 Is an Orthologue of FT, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 19581–19586.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J.W., Rubio, V., Lee, N.Y., et al., COP1 and ELF3 Control Circadian Function and Photoperiodic Flowering by Regulating GI Stability, Mol. Cell, 2008, vol. 32, pp. 617–630.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X.Y., Liu, M.S., Li, J.R., et al., The Wheat TaGI1, Involved in Photoperiodic Flowering, Encodes an Arabidopsis GI Ortholog, Plant. Mol. Biol., 2005, vol. 58, pp. 53–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Stepanenko.

Additional information

Original Russian Text © I.L. Stepanenko, O.G. Smirnov, I.I. Titov, 2012, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2012, Vol. 16, No. 1, pp. 99–106.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanenko, I.L., Smirnov, O.G. & Titov, I.I. A model of the gene network for flowering time regulation in winter wheat and barley. Russ J Genet Appl Res 2, 319–324 (2012). https://doi.org/10.1134/S2079059712040107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059712040107

Keywords

Navigation