Skip to main content
Log in

Age-related changes in number of CD45-positive cells in human dermis

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Age-related changes in the number of leucocytes and other cells of bone marrow origin were investigated in human dermis. The total number of CD45-positive cells increased with age, while the amount of fibroblasts in the dermis gradually decreased. Additionally, an age-related decrease in the number of PCNA-positive fibroblast-like cells, which indicates their proliferative activity, was clearly shown. The correlation analysis revealed that the age-associated increase in the amount of CD45-positive cells is statistically related to a decrease in the total number of PCNA-positive fibroblast-like cells in the dermis. Therefore, the accumulation of CD45-positive cells in the human dermis with age may well be regarded as a mechanism that initiates an inflammatory response and is responsible for the emergence of signs of aging. It is also possible that an increased number of bone marrow-derived cells in the dermis, which are accumulated with age, has an effect on the age-related decrease in the amount of fibroblasts in the dermis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonafe, M., Storei, C., and Franceschi, C., Inflammaging of the stem cell niche: breast cancer as a paradigmatic example: breakdown of the multi-shell cytokine network fuels cancer in aged people, Bioessays, 2012, vol. 34, pp. 40–49.

    Article  CAS  PubMed  Google Scholar 

  2. Dall’olio, F., Vanhooren, V., Chen, C.C., et al., N-glycomic biomarkers of biological aging and longevity: a link with inflamm-aging, Aging Res. Rev., 2012. doi: 10.1016/j.arr.2012.02.002

    Google Scholar 

  3. Ekiz, O., Yüce, G., Ulasli, S.S., et al., Factors influencing skin ageing in a Mediterranean population from Turkey, Clin. Exp. Dermatol., 2012, vol. 37, pp. 492–496.

    Article  CAS  PubMed  Google Scholar 

  4. Gunin, A.G., Kapitova, I.N., and Suslonova, N.V., Effects of histone deacetylase inhibitors on estradiol-induced proliferation and hyperplasia formation in the mouse uterus, J. Endocrinol., 2005, vol. 185, pp. 539–549.

    Article  CAS  PubMed  Google Scholar 

  5. Gunin, A.G., Bitter, A.D., Demakov, A.B., et al., Effects of peroxisome proliferator activated receptors α and γ agonists on estradiol-induced proliferation and hyperplasia formation in the mouse uterus, J. Endocrinol., 2004, vol. 182, pp. 229–239.

    Article  CAS  PubMed  Google Scholar 

  6. Harvima, I.T. and Nilsson, G., Mast cells as regulators of skin inflammation and immunity, Acta Derm. Venereol., 2011, vol. 91, pp. 644–650.

    PubMed  Google Scholar 

  7. Hwang, K.A., Yi, B.R., and Choi, K.C., Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alterations, ILAR J., 2011, vol. 27, pp. 1–8.

    Google Scholar 

  8. Kondo, T. and Ishida, Y., Molecular pathology of wound healing, Forensic. Sci. Int., 2010, vol. 203, pp. 93–98.

    Article  CAS  PubMed  Google Scholar 

  9. Krtolica, A. and Campisi, J., Integrating epithelial cancer, aging stroma and cellular senescence, Adv. Gerontol., 2003, vol. 11, pp. 109–116.

    CAS  PubMed  Google Scholar 

  10. Labat-Robert, J., Information exchanges between cells and extracellular matrix. Influence of aging, Biol. Aujourdhui, 2012, vol. 206, pp. 103–109.

    Article  CAS  PubMed  Google Scholar 

  11. Lee, Y.K., Cha, H.J., Hong, M., et al., Role of NF-κB-p53 crosstalk in ultraviolet A-induced cell death and G1 arrest in human dermal fibroblasts, Arch. Dermatol. Res., 2012, vol. 304, pp. 73–79.

    Article  CAS  PubMed  Google Scholar 

  12. Levakov, A., Vuckovic, N., Dolai, M., et al., Agerelated skin changes, Med. Pregl., 2012, vol. 65, pp. 191–195.

    Article  PubMed  Google Scholar 

  13. Oh, J.H., Kim, Y.K., Jung, J.Y., et al., Changes in glycos-aminoglycans and related proteoglycans in intrinsically aged human skin in vivo, Exp. Dermatol., 2011, vol. 20, pp. 454–456.

    Article  PubMed  Google Scholar 

  14. Quan, T., Qin, Z, Robichaud, P., et al., CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts, J. Cell Commun. Signaling, 2011, vol. 5, pp. 201–207.

    Article  Google Scholar 

  15. Rijken, F. and Bruijnzeel, P.L., The pathogenesis of photo-aging: the role of neutrophils and neutrophilderived enzymes, J. Invest. Dermatol. Symp. Proc., 2009, vol. 14, pp. 67–72.

    Article  CAS  Google Scholar 

  16. Robert, L., Labat-Robert, J., and Robert, A.M., Physiology of skin aging, Clin. Plast. Surg., 2012, vol. 9, pp. 1–8.

    Article  Google Scholar 

  17. Saunders, A.E. and Johnson, P., Modulation of immune cell signaling by the leukocyte common tyrosine phosphatase, CD45, Cell Signaling, 2010, vol. 22, pp. 339–348.

    Article  CAS  Google Scholar 

  18. Sveikata, K., Balciuniene, I., and Tutkuviene, J., Factors influencing face aging. Literature review, Stomatologija, 2011, vol. 13, pp. 113–116.

    PubMed  Google Scholar 

  19. Vukmanovic-Stejic, M., Rustin, M.H., Nikolich-Zugich, J., and Akbar, A.N., Immune responses in the skin in old age, Curr. Opin. Immunol., 2011, vol. 23, pp. 525–531.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, B., Photoaging: a review of current concepts of pathogenesis, J. Cutaneous Med. Surg., 2011, vol. 15, pp. S374–S377.

    CAS  Google Scholar 

  21. Wang, Y., Sun, Y., Yang, X.Y., et al., Mobilized bone marrow-derived cells accelerate wound healing, Int. Wound. J., 2012. doi: 10.1111/j.1742-481X.2012.01007.x

    Google Scholar 

  22. Wolf, J., Weinberger, B., Arnold, C.R., et al., The effect of chronological age on the inflammatory response of human fibroblasts, Exp. Gerontol., 2012, vol. 47, pp. 749–753.

    Article  CAS  PubMed  Google Scholar 

  23. Zapata, A.G., Alfaro, D., and Garcia-Ceca, J., Biology of stem cells: the role of microenvironments, Adv. Exp. Med. Biol., 2012, vol. 741, pp. 135–151.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Gunin.

Additional information

Original Russian Text © V.V. Petrov, O.V. Vasil’eva, N.K. Kornilova, A.G. Gunin, 2012, published in Uspekhi Gerontologii, 2012, Vol. 25, No. 4, pp. 598–603.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, V.V., Vasil’eva, O.V., Kornilova, N.K. et al. Age-related changes in number of CD45-positive cells in human dermis. Adv Gerontol 3, 189–194 (2013). https://doi.org/10.1134/S2079057013030090

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057013030090

Keywords

Navigation