Skip to main content

Histology of Microvascular Aging of Human Skin

  • Living reference work entry
  • First Online:
Textbook of Aging Skin
  • 98 Accesses

Abstract

In this chapter, various histological studies regarding the role of pericytes (PC) in the dermis will be summarized, focusing on dermal microvascular aging (Helmbold P et al. J Invest Dermatol 126:1419–21, 2006; Helmbold P et al. J Cutan Pathol 28:206–10, 2001; Helmbold P et al. J Cutan Pathol 31:431–40, 2004; Helmbold P. Methodische Grundlagen zur Erforschung von Perizyten der Haut. In: Medizinische Fakultät. Halle (Saale): Martin-Luther-Universität Halle, Wittenberg; 2002.). Aging of the dermis proceeds under special conditions. In addition to chronological aging, a powerful extrinsic factor – chronic UV light – leads to photoaging (actinic or solar aging). Some known facultative intrinsic or extrinsic factors that influence dermal aging include diabetes mellitus, alcohol, cigarette smoking, and genodermatoses like progeria (Clin Geriatr Med 5:69–90, 1989; Kardiologiia 16:19–25, 1976; J Rheumatol 27:797–800, 2000; Br J Dermatol 147:1187–91). Previous studies have shown that human dermal microvessel densities depend on age with reduction of functioning reserve capillaries, and there are typical ultrastructural changes in the microvasculature of elderly individuals (Clin Geriatr Med 5:69–90, 1989; Kardiologiia 16:19–25, 1976; Arch Dermatol 138:1437–42, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Helmbold P, Lautenschlager C, Marsch W, et al. Detection of a physiological juvenile phase and the central role of pericytes in human dermal microvascular aging. J Invest Dermatol. 2006;126:1419–21.

    Article  CAS  PubMed  Google Scholar 

  2. Helmbold P, Wohlrab J, Marsch WC, et al. Human dermal pericytes express 3G5 ganglioside – a new approach for microvessel histology in the skin. J Cutan Pathol. 2001;28:206–10.

    Article  CAS  PubMed  Google Scholar 

  3. Helmbold P, Fiedler E, Fischer M, et al. Hyperplasia of dermal microvascular pericytes in scleroderma. J Cutan Pathol. 2004;31:431–40.

    Article  PubMed  Google Scholar 

  4. Helmbold P. Methodische Grundlagen zur Erforschung von Perizyten der Haut. In: Medizinische Fakultät. Halle (Saale): Martin-Luther-Universität Halle, Wittenberg; 2002.

    Google Scholar 

  5. Braverman IM. Elastic fiber and microvascular abnormalities in aging skin. Clin Geriatr Med. 1989;5:69–90.

    CAS  PubMed  Google Scholar 

  6. Korkushko OV, Sarkisov KG. Age-specific characteristics of microcirculation in middle-and old age. Kardiologiia. 1976;16:19–25.

    CAS  PubMed  Google Scholar 

  7. Herrick AL, Moore T, Hollis S, et al. The influence of age on nailfold capillary dimensions in childhood. J Rheumatol. 2000;27:797–800.

    CAS  PubMed  Google Scholar 

  8. Leung WC, Harvey I. Is skin ageing in the elderly caused by sun exposure or smoking? Br J Dermatol. 2002;147:1187–91.

    Article  PubMed  Google Scholar 

  9. Chung JH, Yano K, Lee MK, et al. Differential effects of photoaging vs intrinsic aging on the vascularization of human skin. Arch Dermatol. 2002;138:1437–42.

    PubMed  Google Scholar 

  10. Braverman IM. Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states. J Invest Dermatol. 1989;93:2S–9.

    Article  CAS  PubMed  Google Scholar 

  11. Dehouck MP, Vigne P, Torpier G, et al. Endothelin-1 as a mediator of endothelial cell-pericyte interactions in bovine brain capillaries. J Cereb Blood Flow Metab. 1997;17:464–9.

    Article  CAS  PubMed  Google Scholar 

  12. Takagi H, King GL, Robinson GS, et al. Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci. 1996;37:2165–76.

    CAS  PubMed  Google Scholar 

  13. Kim Y, Imdad RY, Stephenson AH, et al. Vascular endothelial growth factor mRNA in pericytes is upregulated by phorbol myristate acetate. Hypertension. 1998;31:511–5.

    Article  CAS  PubMed  Google Scholar 

  14. Hirschi KK, D’Amore PA. Pericytes in the microvasculature. Cardiovasc Res. 1996;32:687–98.

    Article  CAS  PubMed  Google Scholar 

  15. Lindahl P, Johansson BR, Leveen P, et al. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277:242–5.

    Article  CAS  PubMed  Google Scholar 

  16. Hirschi KK, D’Amore PA. Control of angiogenesis by the pericyte: molecular mechanisms and significance. EXS. 1997;79:419–28.

    CAS  PubMed  Google Scholar 

  17. de Oliveira F. Pericytes in diabetic retinopathy. Br J Ophthalmol. 1966;50:134–43.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Braverman IM, Sibley J, Keh A. Ultrastructural analysis of the endothelial-pericyte relationship in diabetic cutaneous vessels. J Invest Dermatol. 1990;95:147–53.

    Article  CAS  PubMed  Google Scholar 

  19. Wallow IH, Bindley CD, Reboussin DM, et al. Systemic hypertension produces pericyte changes in retinal capillaries. Invest Ophthalmol Vis Sci. 1993;34:420–30.

    CAS  PubMed  Google Scholar 

  20. Schlingemann RO, Rietveld FJ, Kwaspen F, et al. Differential expression of markers for endothelial cells, pericytes, and basal lamina in the microvasculature of tumors and granulation tissue. Am J Pathol. 1991;138:1335–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development. 1998;125:1591–8.

    CAS  PubMed  Google Scholar 

  22. Laaff H, Vandscheidt W, Weiss JM, et al. Immunohistochemical investigation of pericytes in chronic venous insufficiency. Vasa. 1991;20:323–8.

    CAS  PubMed  Google Scholar 

  23. Lugassy C, Eyden BP, Christensen L, et al. Angio-tumoral complex in human malignant melanoma characterised by free laminin: ultrastructural and immunohistochemical observations. J Submicrosc Cytol Pathol. 1997;29:19–28.

    CAS  PubMed  Google Scholar 

  24. Tsukamoto H, Mishima Y, Hayashibe K, et al. Alpha-smooth muscle actin expression in tumor and stromal cells of benign and malignant human pigment cell tumors. J Invest Dermatol. 1992;98:116–20.

    Article  CAS  PubMed  Google Scholar 

  25. Sundberg C, Ivarsson M, Gerdin B, et al. Pericytes as collagen-producing cells in excessive dermal scarring. Lab Invest. 1996;74:452–66.

    CAS  PubMed  Google Scholar 

  26. Braverman IM, Sibley J. Ultrastructural and three-dimensional analysis of the contractile cells of the cutaneous microvasculature. J Invest Dermatol. 1990;95:90–6.

    Article  CAS  PubMed  Google Scholar 

  27. Gendron RL. A plasticity for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Surv Ophthalmol. 1999;44:184–5.

    CAS  PubMed  Google Scholar 

  28. Schönfelder U, Hofer A, Paul M, et al. In situ observation of living pericytes in rat retinal capillaries. Microvasc Res. 1998;56:22–9.

    Article  PubMed  Google Scholar 

  29. Erber R, Thurnher A, Katsen AD, et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J. 2004;18:338–40, Epub 2003 Dec;2004.

    CAS  PubMed  Google Scholar 

  30. Sato Y, Rifkin DB. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol. 1989;109:309–15.

    Article  CAS  PubMed  Google Scholar 

  31. Antonelli-Orlidge A, Saunders KB, Smith SR, et al. An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci U S A. 1989;86:4544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.

    Article  CAS  PubMed  Google Scholar 

  33. Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282:947–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Helmbold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Helmbold, P. (2015). Histology of Microvascular Aging of Human Skin. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_2-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_2-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics