Skip to main content
Log in

Polylactic Acid Thin Films Properties after Steam Sterilization

  • MATERIALS FOR HUMAN LIFE SUPPORT AND ENVIRONMENTAL PROTECTION
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

This paper presents data on the effects of steam sterilization on the properties of thin films based on polylactic acid. It has been established that thin films based on polylactic acid and poured from solutions of 10, 20, and 30 g have two topographically different sides. One side (internal) has a more prominent surface. The other side (external) has a smooth surface. It is reflected in the roughness parameters. Ra of the internal side varies from 0.01 to 0.018 μm. Ra of the external side is 0.17–0.4 μm. The average roughness increases from 0.17 to 0.4 μm with an increase in the mass of the solution poured into films. Sterilization contributes to a change in the surface of the polylactic acid films and makes their profile more prominent. This leads to a significant increase in the roughness of both sides by more than 5 times. In addition, it was found that thin polylactic acid films have hydrophobic (θ = 80°) properties. Steam sterilization reduces the wetting angle by 14°–15° (17–18%) and increases the surface energy values to a greater extent owing to the polar component. These changes increase the hydrophilicity of the studied material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Savioli Lopes, M., Jardini, A.L., and Maciel Filho, R., Poly (lactic acid) production for tissue engineering applications, Procedia Eng., 2012, vol. 42, pp. 1402–1413.

    Article  Google Scholar 

  2. Peesan, M., Rujiravanit, R., and Supaphol, P., Electrospinning of hexanoyl chitosan/polylactide blends, J. Biomater. Sci., Polym. Ed., 2006, vol. 17, no. 5, pp. 547–565.

    Article  CAS  Google Scholar 

  3. Sangsanoh, P., Waleetorncheepsawat, S., Suwantong, O., Wutticharoenmongkol, P., et al., In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds, Biomacromolecules, 2007, vol. 8, no 5, pp. 1587–1594.

    Article  CAS  Google Scholar 

  4. Ramot, Y., Haim-Zada, M., Domb, A.J., and Nyska, A., Biocompatibility and safety of PLA and its copolymers, Adv. Drug Delivery Rev., 2016, vol. 107, pp. 153–162.

    Article  CAS  Google Scholar 

  5. Kasparova, E.A., Subbot, A.M., Anohin, A.I., and Pavlyuk, A.S., Clinical efficiency of personalized cell therapy for endothelial keratitis, Kataraktal’naya Refrakts. Khir., 2011, vol. 11, no. 2, pp. 45–49.

    Google Scholar 

  6. Bikboev, M.M. and Yafaeva, L.R., Combined treatment of bullous keratopathy, Vestn. Orenb. Gos. Univ., 2014, no. 12, pp. 61–64.

  7. Filippova, E.O., Krivosheina, O.I., and Zapuskalov, I.V., The experimental local application of authologic mononuclear blood cells for the endothelial-epithelial corneal dystrophy, Byull. Sib. Med., 2016, vol. 15, no. 2, pp. 70–75.

    Article  Google Scholar 

  8. Mamikonyan, V.R. and Trufanov, S.V., Microkeratome-assisted posterior lamellar keratoplasty for treatment of bullous keratopathy, Sib. Nauchn. Med. Zh., 2009, no. 4, pp. 3–11.

  9. Filippova, E.O., Krivosheina, O.I., and Zapuskalov, I.V., Intrastromal implantation of polymer track membranes in the endothelial corneal dystrophy, Med. Vestn. Bashk., 2015, vol. 10, no. 2, pp. 137–139.

    Google Scholar 

  10. Filippova, E.O., Krivosheina, O.I., and Zapuskalov, I.V., Experimental study of autologous mononuclears of blood cells in the treatment of endothelial-epithelial corneal dystrophy, Med. Vestn. Bashk., 2016, vol. 11, no. 1, pp. 113–115.

    Google Scholar 

  11. Brunette, I., Roberts, C.J., Vidal, F., Harissi-Dagher, M., Lachaine, J., and Sheardown, H., Alternatives to eye bank native tissue for corneal stromal replacement, Prog. Retinal Eye Res., 2017, vol. 59, pp. 97–130.

    Article  Google Scholar 

  12. Filippova, E.O., Karpov, D.A., Gradoboev, A.V., Sohoreva, V.V., and Pichugin, V.F., Influence of low-temperature plasma and γ radiation on the surface properties of PET track membranes, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 5, pp. 664–672.

    Article  Google Scholar 

  13. Silindir, M. and Ozer, A.Y., Sterilization methods and comparison of e-beam sterilization with gamma radiation sterilization, Fabad J. Pharm. Sci., 2009, vol. 34, no. 1, pp. 43–53.

    Google Scholar 

  14. Karwath, P., Sartor, J., Gries, W., Wodarski, C., Dittmar, C., Biersack, H., and Guhlke, S., Steam sterilization and automatic dispensing of [18F] fludeoxyglucose (FDG) for injection, Appl. Radiat. Isot., 2005, vol. 62, pp. 577–586.

    Article  CAS  Google Scholar 

  15. Nair, P.D. and Prabha, D. Morphological changes of poly (ethylene terephthalate) on multiple steam sterilization, Clin. Mater., 1990, vol. 5, no. 1, pp. 43–46.

    Article  CAS  Google Scholar 

  16. O’Brien, L.E. and Bilder, D. Beyond the niche: tissue-level coordination of stem cell dynamics, Annu. Rev. Cell Dev. Biol., 2013, vol. 29, pp. 107–136.

    Article  Google Scholar 

  17. Kolosova, T.M. and Belyaev, E.S., Statisticheskaya obrabotka rezul’tatov eksperimenta: Metodicheskie ukazaniya (Guide for Statistical Processing of Experimental Results), Nizhny Novgorod, 2015.

    Google Scholar 

  18. Gonçalves, C., Coutinho, J.A.P., and Marrucho, I.M., Optical properties, in Poly(lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, New York: Wiley, 2010, pp. 97–112.

    Google Scholar 

  19. Meaurio, E., Lopez-Rodriguez, N., and Sarasua, J.R., Infrared spectrum of poly (L-lactide): application to crystallinity studies, Macromolecules, 2006, vol. 39, no. 26, pp. 9291–9301.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation and Federal Targeted Program (agreement no. 14.575.21.0140, project unique identifier RFMEFI57517X0140).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Ivanova, E. O. Filippova, D. A. Karpov or V. F. Pichugin.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, N.M., Filippova, E.O., Karpov, D.A. et al. Polylactic Acid Thin Films Properties after Steam Sterilization. Inorg. Mater. Appl. Res. 11, 377–384 (2020). https://doi.org/10.1134/S2075113320020148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320020148

Keywords:

Navigation