Skip to main content
Log in

Characterization of polyaniline thin films prepared on polyethylene terephthalate substrate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The polyaniline thin films were prepared by in situ chemical polymerization of aniline on polyethylene terephthalate substrate in the aqueous solutions of citric acid with ammonium peroxydisulfate as oxidant. Using ultraviolet–visible and Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron with energy-dispersive X-ray microscopy, atomic force microscopy, and four-point probe resistivity measurements, pure polyethylene terephthalate and polyaniline thin films were thoroughly characterized. Chemical analysis confirmed the formation of polyaniline with a high degree of oxidation in the form of a smooth thin film (with a thickness of ~ 80 ± 10 nm) on polyethylene terephthalate surface. However, delocalized polyaniline macromolecule aggregates in the spherical shape (with the diameter of ~ 30–40 nm) as well as in the irregular shape (the maximum size of ~ 300 nm) were found on the substrate. The values of average arithmetic roughness, average square roughness, asymmetry, kurtosis, average maximal profile height as well as average maximal height, and depth of roughness were calculated based on the atomic force microscopy data for pure polyethylene terephthalate and polyaniline thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Inzelt G (2017) Recent advances in the field of conducting polymers. J Solid State Electrochem 21(7):1965–1975

    CAS  Google Scholar 

  2. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810

    CAS  Google Scholar 

  3. Ćirić-Marjanović G (2013) Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47

    Google Scholar 

  4. Stejskal J (2019) Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. Chem Pap 74:1–54

    Google Scholar 

  5. Malinauskas A (2001) Chemical deposition of conducting polymers. Polymer 42(9):3957–3972

    CAS  Google Scholar 

  6. Hnizdiukh YuA, Yatsyshyn MM, Reshetnyak OV (2017) Surface Modification of Polymeric Materials by Polyaniline and Application of Polyaniline/Polymeric Composites. In: Reshetnyak OV, Zaikov GE (eds) Computational and Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group), Toronto; New Jersey, pp 423–473

    Google Scholar 

  7. Laranjeiraa JMG, da Silva EF Jr, de Azevedo WM, de Vasconcelos EA, Khoury HJ, Simão RA, Achete CA (2003) AFMstudiesofpolyanilinenanofilmsirradiatedwithgammarays. Microelectron J 34:511–513

    Google Scholar 

  8. Syed JA, Lu H, Tang S, Meng X (2015) Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by spin coating technique. Appl Surf Sci 325:160–169

    CAS  Google Scholar 

  9. Tomsík E, Morávková Z, Stejskal J, Trchová M, Zemek J (2012) In situ polymerized polyaniline films: the top and the bottom. Synth Met 162:2401–2405

    Google Scholar 

  10. Dispenza C, Sabatino MA, Deghiedy N, Casaletto MP, Spadaro G, Piazza S, Abd El-Rehim HA (2015) In-situ polymerization of polyaniline in radiation functionalized polypropylene films. Polymer 67:128–138

    CAS  Google Scholar 

  11. Kim J-Y, Lee J-H, Kwon S-J (2007) The manufacture and properties of polyaniline nano-films prepared through vapor-phase polymerization. Synth Met 157(8–9):336–342

    CAS  Google Scholar 

  12. Bera A, Deb K, Kathirvel V, Bera T, Thapa R, Saha B (2017) Flexible diode of polyaniline/ITO heterojunction on PET substrate. Appl Surf Sci 418:264–269

    CAS  Google Scholar 

  13. Goktas H, Demircioglu Z, Sel K, Gunes T, Kaya I (2013) The optical properties of plasma polymerized polyaniline thin films. Thin Solid Films 548:81–85

    CAS  Google Scholar 

  14. Huyen DN, Tung NT, Thien ND, Thanh LH (2011) Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites. Sensors 11(2):1924–1931

    CAS  PubMed Central  Google Scholar 

  15. Sonker RK, Sabhajeet SR, Yadav BC (2016) TiO2–PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO2 gas sensing. J Mater Sci: Mater Electron 27(11):11726–11732

    CAS  Google Scholar 

  16. Dhaoui W, Zarrouk H, Pron A (2007) Spectroscopic properties of thin layers of sulfamic acid-doped polyaniline and their application to reagentless determination of nitrite. Synth Met 157(13–15):564–569

    CAS  Google Scholar 

  17. Castrellon-Uribe J, Nicho ME, Reyes-Merino G (2009) Remote optical detection of low concentrations of aqueous ammonia employing conductive polymers of polyaniline. Sens Actuat B: Chem 141(1):40–44

    CAS  Google Scholar 

  18. Sambasevam KP, Mohamad S, Phang S-W (2015) Effect of dopant concentration on polyaniline for hydrazine detection. Mater Sci Semicon Process 33:24–31

    CAS  Google Scholar 

  19. Birajadar RB, Upadhye D, Mahajan S, Vyas JC, Sharma R (2015) Study of room temperature LPG sensing behavior of polyaniline thin film synthesized by cost effective oxidative polymerization technique. J Mater Sci: Mater Electron 26(7):5065–5070

    CAS  Google Scholar 

  20. Bandgar DK, Navale ST, Mane AT, Gupta SK, Aswal DK, Patil VB (2015) Ammonia sensing properties of polyaniline/α-Fe2O3 hybrid nanocomposites. Synth Met 204:1–9

    CAS  Google Scholar 

  21. Sonker RK, Yadav BC, Sabhajeet SR (2017) Preparation of PANI doped TiO2 nanocomposite thin film and its relevance as room temperature liquefied petroleum gas sensor. J Mater Sci: Mater Electron 28(19):14471–14475

    CAS  Google Scholar 

  22. Sonker RK, Yadav BC, Gupta V, Tomar M (2018) Fabrication and characterization of ZnO-TiO2-PANI (ZTP) micro/nanoballs for the detection of flammable and toxic gases. J Hazard Mater 370:126–137

    PubMed  Google Scholar 

  23. Patil RB, Jatratkar AA, Devan RS, Ma Y-R, Puri RK, Puri V, Yadav JB (2015) Effect of pH on the properties of chemical bath deposited polyanilinethin film. Appl Surf Sci 327:201–204

    CAS  Google Scholar 

  24. Jin Z, Su Y, Duan Y (2000) An improved optical pH sensor based on polyaniline. Sens Actuators B 71(1–2):118–122

    CAS  Google Scholar 

  25. Sinha V, Patel MR, Patel JV (2008) Pet waste management by chemical recycling: a review. J Polym Environ 18(1):8–25

    Google Scholar 

  26. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351(6278):1196–1199

    CAS  PubMed  Google Scholar 

  27. Tabellout M, Fatyeyeva K, Baillif P-Y, Bardeau J-F, Pud AA (2005) The influence of the polymer matrix on the dielectric and electrical properties of conductive polymer composites based on polyaniline. J Non-Cryst Solids 351(33–36):2835–2841

    CAS  Google Scholar 

  28. Kelly FM, Meunier L, Cochrane C, Koncar V (2013) Polyaniline: application as solid state electrochromic in a flexible textile display. Displays 34(1):1–7

    CAS  Google Scholar 

  29. Duboriz I, Pud A (2014) Polyaniline/poly (ethylene terephthalate) film as a new optical sensing material. Sens Actuators B Chem 190:398–407

    CAS  Google Scholar 

  30. Kumar L, Rawal I, Kaur A, Annapoorni S (2017) Flexible room temperature ammonia sensor based on polyaniline. Sens Actuators B Chem 240:408–416

    CAS  Google Scholar 

  31. Huang H, Liu W (2006) Polyaniline/poly (ethylene terephthalate) conducting composite fabric with improved fastness to washing. J Appl Polym Sci 102(6):5775–5780

    CAS  Google Scholar 

  32. Yu J, Zhou T, Pang Z, Wei Q (2015) Flame retardancy and conductive properties of polyester fabrics coated with polyaniline. Text Res J 86(11):1171–1179

    Google Scholar 

  33. Mu S, Xie H, Wang W, Yu D (2015) Electroless silver plating on PET fabric initiated by in-situ reduction of polyaniline. Appl Surf Sci 353:608–614

    CAS  Google Scholar 

  34. Kutanis S, Karakışla M, Akbulut U, Saçak M (2007) The conductive polyaniline/poly(ethylene terephthalate) composite fabrics. Compos Part A-Appl S 38(2):609–614

    Google Scholar 

  35. Çetin E, Karakişla M, Saçak M (2008) The preparation and characterization of conductive poly(ethylene terephthalate)/polyaniline composite fibers using benzoyl peroxide. Fibers Polym 9(3):255–262

    Google Scholar 

  36. Najim TS, Salim AJ (2017) Polyaniline nanofibers and nanocomposites: Preparation, characterization, and application for Cr (VI) and phosphate ions removal from aqueous solution. Arabian J Chem 10:S3459–S3467

    CAS  Google Scholar 

  37. Bai S, Ye J, Luo R, Chen A, Li D (2016) Hierarchical polyaniline microspheres loading on flexible PET films for NH3 sensing at room temperature. RSC Adv 6(9):6939–6945

    CAS  Google Scholar 

  38. Liu S, Liu D, Pan Z (2018) The effect of polyaniline (PANI) coating via dielectric-barrier discharge (DBD) plasma on conductivity and air drag of polyethylene terephthalate (PET) yarn. Polymers 10(4):351

    PubMed Central  Google Scholar 

  39. Bai S, Zhao Y, Sun J, Tian Y, Luo R, Li D, Chen A (2015) Ultrasensitive room temperature NH3 sensor based on graphene-polyaniline hybrid loading on PET thin film. Chem Commun 51:7524–7527

    CAS  Google Scholar 

  40. Gavgani JN, Hasani A, Nouri M, Mahyari M, Salehi A (2016) Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens Actuators B Chem 229:239–248

    CAS  Google Scholar 

  41. Xue L, Wanga W, Guo Y, Liu G, Wan P (2017) Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors. Sens Actuators B Chem 244:47–53

    CAS  Google Scholar 

  42. Mello JNPD, Mulato M (2015) Optochemical sensors using electrodeposited polyaniline films: electrical bias enhancement of reflectance response. Sens Actuators B Chem 213:195–201

    CAS  Google Scholar 

  43. Kim BR, Lee HK, Park SH, Kim HK (2011) Electromagnetic interference shielding characteristics and shielding effectiveness of polyaniline-coated films. Thin Solid Films 519:3492–3496

    CAS  Google Scholar 

  44. Stempien Z, Rybicki T, Rybicki E, Kozanecki M, Szynkowska MI (2015) In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synth Met 202:49–62

    CAS  Google Scholar 

  45. Nand AV, Ray S, Travas-Sejdic J, Kilmartin PA (2012) Characterization of polyethylene terephthalate/polyaniline blends as potential antioxidant materials. Mater Chem Phys 134:443–450

    CAS  Google Scholar 

  46. Yslas EI, Cavallo P, Acevedo DF, Barbero CA, Rivarola VA (2015) Cysteine modified polyaniline films improve biocompatibility for two cell lines. Mater Sci Eng C 51:51–56

    CAS  Google Scholar 

  47. Giz MJ, de Albuquerque Maranhão SL, Torresi RM (2000) AFM morphological study of electropolymerised polyaniline films modified by surfactant and large anions. Electrochem Commun 2:377–381

    CAS  Google Scholar 

  48. Shishkanova TV, Matějka P, Král V, Sedenková I, Trchová M, Stejskal J (2008) Optimization of the thickness of a conducting polymer, polyaniline, deposited on the surface of poly(vinyl chloride) membranes: a new way to improve their potentiometric response. Anal Chim Acta 624(2):238–246

    CAS  PubMed  Google Scholar 

  49. Garg S, Hurren C, Kaynak A (2007) Improvement of adhesion of conductive polypyrrole coating on wool and polyester fabrics using atmospheric plasma treatment. Synth Met 157:41–47

    CAS  Google Scholar 

  50. Shkirskaya S, Kolechko M, Kononenko N (2015) Sensor properties of materials based on fluoride polymer F-4SF films modified by polyaniline. Curr Appl Phys 15(12):1587–1592

    Google Scholar 

  51. Travain SA, de Souza NC, Balogh DT, Giacometti JA (2007) Study of the growth process of in situ polyaniline deposited films. J Colloid Interface Sci 316(2):292–297

    CAS  PubMed  Google Scholar 

  52. Faraj MG, Ibrahim K, Eisa MH (2011) Investigation of the optical and structural properties of thermally evaporated cadmium sulphide thin films on polyethylene terephthalate substrate. Mater Sci Semicond Process 14:146–150

    CAS  Google Scholar 

  53. Prasad SG, De A, De U (2011) Structural and optical investigations of radiation damage in transparent PET polymer films. Int J Spectrosc 2011:1–7

    Google Scholar 

  54. Faraj MG, Ibrahim K, Eisa MH (2011) Deposited indium tin oxide (ITO) thin films by dc-magnetron sputtering on polyethylene terephthalate substrate (PET). Roman J Phys 56(5–6):730–741

    Google Scholar 

  55. Wang S, Li Y, Huang Z, Li H (2013) Synthesis and characteristic of polyaniline/Dy2O3 composites: thermal property and electrochemical performance. J Environ Sci 25:S36–S40

    Google Scholar 

  56. Sonker RK, Yadav BC, Dzhardimalieva GI (2016) Preparation and properties of nanostructured PANI thin film and its application as low temperature NO2 sensor. J Inorg Organomet Polym Mater 26(6):1428–1433

    CAS  Google Scholar 

  57. Nguyen AS, Nguyen TD, Thai TT, Trinh AT, Pham GV, Thai H, Tran DL, To TXH, Nguyen DT (2020) Synthesis of conducting PANi/SiO2 nanocomposites and their effect on electrical and mechanical properties of antistatic waterborne epoxy coating. J Coat Technol Res 17(2):361–370

    CAS  Google Scholar 

  58. Shehzad MA, Qaiser AA, Javaid A, Saeed F (2015) In situ solution-phase polymerization and chemical vapor deposition of polyanilne on microporous cellulose ester membranes: AFM and electrical conductivity studies. Synth Met 200:166–171

    Google Scholar 

  59. Wu W, Pan D, Li Y, Zhao G, Jing L, Chen S (2015) Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electrochim Acta 152:126–134

    CAS  Google Scholar 

  60. Hou X, Wang Y, Hou J, Sun G, Zhang C (2016) Effect of polyaniline-modified glass fibers on the anticorrosion performance of epoxy coatings. J Coat Technol Res 14(2):407–415

    Google Scholar 

  61. Vijayakumar S, Rajakumar PR (2012) Infrared spectral analysis of waste pet samples. ILCPA 4:58–65

    Google Scholar 

  62. Šeděnková I, Trchová M, Blinova NV, Stejskal J (2006) In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. Thin Solid Films 515(4):1640–1646

    Google Scholar 

  63. Abdiryim T, Xiao-Gang Z, Jamal R (2005) Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater Chem Phys 90(2–3):367–372

    CAS  Google Scholar 

  64. Jia Q, Shan S, Jiang L, Wang Y (2010) One-step synthesis of polyaniline nanofibers decorated with silver. J Appl Polym Sci 115(1):26–31

    CAS  Google Scholar 

  65. Sapurina I, Riede A, Stejskal J (2001) In-situ polymerized polyaniline films: 3. Film formation. Synth Met 123(3):503–507

    CAS  Google Scholar 

  66. Qi J, Xu X, Liu XX, Lau KTong (2014) Fabrication of textile based conductometric polyaniline gas sensor. Sens Actuators B Chem 202:732–740

    CAS  Google Scholar 

  67. Stejskal J, Hlavatá D, Holler P, Trchová M, Prokeś J, Sapurina I (2004) Polyaniline prepared in the presence of various acids: a conductivity study. Polym Int 53:294–300

    CAS  Google Scholar 

  68. Peltonen J, Järn M, Areva S, Linden M, Rosenholm JB (2004) Topographical parameters for specifying a three-dimensional surface. Langmuir 20:9428–9431

    CAS  PubMed  Google Scholar 

  69. Dubal DP, Patil SV, Gund GS, Lokhande CD (2013) Polyaniline–polypyrrole nanograined composite via electrostatic adsorption for high performance electrochemical supercapacitors. J Alloys Compd 552:240–247

    CAS  Google Scholar 

  70. Li D-F, Wang W, Wang H-J, Jia X-S, Wang J-Y (2008) Polyaniline films with nanostructure used as neural probe coating surfaces. Appl Surf Sci 255:581–584

    CAS  Google Scholar 

Download references

Acknowledgement

The research work was financially supported by the Ministry of Education and Science of Ukraine (project number 0120U102184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Saldan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stetsiv, Y.A., Yatsyshyn, M.M., Nykypanchuk, D. et al. Characterization of polyaniline thin films prepared on polyethylene terephthalate substrate. Polym. Bull. 78, 6251–6265 (2021). https://doi.org/10.1007/s00289-020-03426-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03426-7

Keywords

Navigation