Skip to main content
Log in

Thermal and barrier properties of stretched and annealed polylactide films

  • Structure and Properties
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

In this study, both stretched and annealed polylactide (PLA) films were prepared by a twin-screw extruder with different draw ratios, and the effects of the orientation, crystallization, ambient temperature and humidity on the barrier properties were evaluated. The wide-angle X-ray diffraction results revealed that the crystallinity increase with the increase of draw ratio, and the α'-crystal was produced by uniaxially stretching. Moreover, the α'-crystal was easy to form when the film was annealed at 90°C. Based on the scanning electron microscopy observation, the film surface cracks occurred at a certain draw ratio. Modulated differential scanning calorimetry (MDSC) results showed that the glass-transition temperature and crystallinity increased with the increase of draw ratio. The barrier behavior results showed that, both stretched and annealed PLA films exhibited much better oxygen and water vapor barrier than undrawn PLA at middle draw ratio. Upon further stretching, their barrier ability was reduced. The annealed PLA film had higher barrier ability than that of the stretched PLA film. With regard to the temperature and humidity, the oxygen permeability coefficient increased with the increase of temperature, however, the water vapor permeability coefficient reduced slightly. The oxygen and water vapor permeability coefficient were insensitive to humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Haugaard, C. J. Weber, B. Danielsen, and G. Bertelsen, Eur. Food. Res. Technol. 214, 423 (2002).

    Article  CAS  Google Scholar 

  2. D. V. Plackett, V. K. Holm, P. Johansen, S. Ndoni, P. V. Nielsen, T. Sipilainen-Malm, A. Sodergard, S. Verstichel, Packag. Technol. Sci. 19, 1 (2006).

    Article  CAS  Google Scholar 

  3. H. Tsuji and K. J. Sumida, Appl. Polym. Sci. 79, 1582 (2001).

    Article  CAS  Google Scholar 

  4. L. L. Zhang, C. D. Xiong, and X. M. Deng, J. Appl. Polym. Sci. 56, 103 (1995).

    Article  CAS  Google Scholar 

  5. S. Zhou, X. Deng, X. Li, W. Jia, and L. Liu, J. Appl. Polym. Sci. 91, 1848 (2004).

    Article  CAS  Google Scholar 

  6. H. Tsuji, R. Okino, H. Daimon, and K. Fujie, Appl. Polym. Sci. 99, 2245 (2006).

    Article  CAS  Google Scholar 

  7. L. Bao, J. R. Dorgan, D. Knauss, S. Hait, N. S. Oliveira, I. M. Maruccho, J. Membr. Sci. 285, 166 (2006).

    Article  CAS  Google Scholar 

  8. D. J. Sekelik, E. V. Stepanov, S. Nazarenko, D. Schiraldi, A. Hiltner, E. Baer, J. Polym. Sci., Part B: Polym. Phys. 37, 847 (1999).

    Article  CAS  Google Scholar 

  9. R. Auras, B. Harte, and S. Selke, J. Appl. Polym. Sci. 92, 1790 (2004).

    Article  CAS  Google Scholar 

  10. T. Komatsuka, A. Kusakabe, and K. Nagai, Desalination 234, 212 (2008).

    Article  CAS  Google Scholar 

  11. K. Petersen, P. V. Nielsen, and M. B. Olsen, StarchStaerke 53, 356 (2001).

    Article  CAS  Google Scholar 

  12. R. Auras, B. Harte, and S. Selke, Macromol. Biosci. 4, 835 (2004).

    Article  CAS  Google Scholar 

  13. M. Cocca, M. L. D. Lorenzo, M. Malinconico, and V. Frezza, Eur. Polym. J. 47, 1073 (2011).

    Article  CAS  Google Scholar 

  14. C. Courgneau, S. Domenek, R. Lebosse, A. Guinault, L. Avérous, V. Ducruet, Polym. Int. 61, 180 (2012).

    Article  CAS  Google Scholar 

  15. M. Drieskens, R. Peeters, J. Mullens, D. Franco, P. J. Lemstra, D. J. Hristova-Bogaerds, J. Polym. Sci., Part B: Polym. Phys. 47, 2247 (2009).

    Article  CAS  Google Scholar 

  16. M. Takasaki, H. Ito, and T. Kikutani, J. Macromol. Sci., Part B: Phys. 42 (1), 57 (2003).

    Article  Google Scholar 

  17. H. Tsuji and T. Tsuruno, Macromol. Mater. Eng. 295, 709 (2010).

    Article  CAS  Google Scholar 

  18. H. Tsuji, R. Okino, H. Daimon, and K. Fujie, Appl. Polym. Sci. 99, 2245 (2006).

    Article  CAS  Google Scholar 

  19. S. W. Cho, M. Gallstedt, and M. S. Hedenqvist, J. Agric. Food. Chem. 58, 7344 (2010).

    Article  CAS  Google Scholar 

  20. N. Kawashima, S. Ogawa, S. Obuchi, M. Matsuo, and T. Yagi, in Biopolymers Polyesters III: Applications and Commercial Products, Ed. by Y. Doi and A. Steinbuchel (Wiley-Blackwell, New York, Vol. 4, 2002), p. 251.

  21. J. K. Lee, K. H. Lee, and B. S. Jin, Eur. Polym. J. 37, 907 (2001).

    Article  CAS  Google Scholar 

  22. G. Stoclet, R. Seguela, J. M. Lefebvre, S. Elkoun, C. Vanmansart, Macromolecules 43, 1488 (2010).

    Article  CAS  Google Scholar 

  23. J. F. Turner, A. Riga, A. O’Connor, J. Zhang, J. J. Collis, Therm. Anal. Calorim. 75, 257 (2004).

    Article  CAS  Google Scholar 

  24. R. A. Auras, S. P. Singh, and J. Singh, Packag. Technol. Sci. 18, 207 (2005)

    Article  CAS  Google Scholar 

  25. R. A. Auras, B. Harte, S. Selke, and R. Hernandez, J. Plast. Film. Sheeting 19, 123 (2003).

    Article  CAS  Google Scholar 

  26. N. Delpouve, G. Stoclet, A. Saiter, E Dargent, S. Marais, J. Phys. Chem. B 116, 4615 (2012).

    Article  CAS  Google Scholar 

  27. L. Q. Shen, Z. K. Xu, and Y. Y. Xu, Appl. Polym. Sci. 84, 203 (2002).

    Article  CAS  Google Scholar 

  28. E. W. Fischer, H. J. Sterzel, and G. Wegner, Kolloid. Z. Z. Polym. 251, 980 (1973).

    Article  CAS  Google Scholar 

  29. P. J. Pan, B. Zhu, W. H. Kai, T. Dong, Y. Inoue, Macromolecules 41, 4296 (2008).

    Article  CAS  Google Scholar 

  30. T. Miyata and T. Masuko, Polymer 38, 4003 (1997).

    Article  CAS  Google Scholar 

  31. J. M. Zhang, Y. X. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, Y. Ozaki, Macromolecules 38, 8012 (2005).

    Article  CAS  Google Scholar 

  32. T. Kawai, N. Rahman, G. Matsuba, K. Nishida, T. Kanaya, M. Nakano, H. Okamoto, J. Kawada, A. Usuki, N. Honma, K. Nakajima, M. Matsuda, Macromolecules 40, 9463 (2007).

    Article  CAS  Google Scholar 

  33. D. Awai, K. Takahashi, A. Sasashige, and T. Kanamoto, Macromolecules 36, 3601 (2003).

    Article  Google Scholar 

  34. H. P. Wang, J. K. Keum, A. Hiltner, and E. Baer, Macromolecules 42, 7055 (2009).

    Article  CAS  Google Scholar 

  35. R. Gavara and R. J. Hernandez, J. Polym. Sci., Part B: Polym. Phys. 32, 2375 (1994).

    Article  CAS  Google Scholar 

  36. J. M. Lagaron, E. Gimenez, R. Catala, and R. Gavara, Macromol. Chem. Phys. 204, 704 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tungalag Dong.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, T., Yu, Z., Wu, J. et al. Thermal and barrier properties of stretched and annealed polylactide films. Polym. Sci. Ser. A 57, 738–746 (2015). https://doi.org/10.1134/S0965545X15060073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X15060073

Keywords

Navigation