Skip to main content
Log in

Use of Marine Gravimetric Survey Data for Correcting the Satellite Models of the Global Gravity Field in the World Ocean

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract—

The article studies the possibilities of using the high-precision marine gravimetric survey data to correct the global models of the Earth’s gravity field in the World Ocean. The accuracy of modern models in water areas on a regional scale is determined by the capabilities of the satellite altimetry method and depends on the gravity field characteristics. On the gradient structures of the field, the amplitudes of real anomalies are suppressed in the models; therefore, for the models to be used more efficiently, it is necessary to restore high frequencies of anomalies in these models. On the abyssal structures, the main error in models is high-frequency noise. This paper describes the techniques for correcting the data obtained from these models, which makes it possible to increase the accuracy over fairly large areas, using a limited number of marine gravimetric measurements. The paper also provides the practical assessments of the new global altimetry model of the Earth’s gravity field Sandwell and Smith v.32 in various regions of the World Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Sandwell, D.T., Advanced Geodynamics: The Fourier Transform Method, Cambridge: Cambridge University Press, 2022. https://doi.org/10.1017/9781009024822

    Book  Google Scholar 

  2. Barthelmes, F., Global models, in Encyclopedia of Geodesy, Grafarend, E., Ed., Springer International Publishing, 2014. https://doi.org/10.1007/978-3-319-02370-0_43-1

    Book  Google Scholar 

  3. Andersen, O.B., Marine gravity and geoid from satellite altimetry, in: Geoid Determination. Lecture Notes in Earth System Sciences, Sanso, F., Sideris, M., Eds, vol. 110, Berlin, Heidelberg: Springer. 2013, pp. 401–451. https://doi.org/10.1007/978-3-540-74700-0_9.

  4. Bekhterev, S.V., Drobyshev, M.N., Zheleznyak, L.K., Koneshov, V.N., Mikhailov, P.S., and Solov’ev, V.N., Errors of Earth gravity models as depending on seafloor morphology, Izvestiya. Physics of the Solid Earth, 2019, vol. 55, no. 5, pp. 806–810. https://doi.org/10.1134/S1069351319050021

    Article  Google Scholar 

  5. Koneshov, V.N., Drobyshev, N.V., Zheleznyak, L.K., Klevtsov, V.V., and Solov’ev, V.N., Techniques and problems related to studies of the World Ocean gravity field, Geofizicheskie issledovaniya, 2006, no. 5, pp. 32–54.

  6. Zheleznyak, L.K., Koneshov, V.N., Mikhailov, P.S., and Solov’ev, V.N., Use of the Earth’s gravitational model in marine gravity measurements, Izvestiya. Physics of the Solid Earth, 2015, vol. 51. No. 4, pp. 559–565. https://doi.org/10.1134/S1069351315040138

    Article  Google Scholar 

  7. Li, J., Sideris, M.G., Marine gravity and geoid determination by optimal combination of satellite altimetry and shipborne gravimetry data, J. Geodesy, 1997, vol. 71, no. 4, pp. 209–216. https://doi.org/10.1007/s001900050088

    Article  Google Scholar 

  8. Tziavos, I.N., Forsberg, R., and Sideris, M.G., Marine gravity field recovery by combining satellite altimetry and shipborne gravimetry, Bollettino di Geofisica Teorica ed Applicata, 1999, vol. 40, no. 3–4, pp. 219–226.

    Google Scholar 

  9. Vergos, G.S., Grebenitcharsky, R.S., and Sideris, M.G., Combination of multi-satellite altimetry and shipborne gravity data for geoid determination in a coastal region of Eastern Canada, International Service for the Geoid (IGeS) Bulletin, 2002, no. 13, pp. 100–115.

  10. Wan, X., Hao, R., Jia, Y., Wu, X., Wang, Y., and Feng, L., Global marine gravity anomalies from multi-satellite altimeter data, Earth, Planets and Space, 2022, vol. 74, 165. https://doi.org/10.1186/s40623-022-01720-4

    Article  Google Scholar 

  11. Kamto, P.G., Yap, L., Nguiya, S., Kande, L.H., and Kamguia, J., Evaluation of latest marine gravity field models derived from satellite altimetry over the Gulf of Guinea (Central Africa) with shipborne gravity data, Studia Geophysica et Geodaetica, 2022, vol. 66, no. 1–2, pp. 23–37. https://doi.org/10.1007/s11200-021-0157-y

    Article  Google Scholar 

  12. Mikahilov, P.S., Koneshov, V.N., Solov’ev, V.N., and Zheleznyak, L.K., New results of estimation of modern global ultrahigh-degree models of the Earth’s gravity field in the World Ocean, Gyroscopy and Navigation, 2022, vol. 13, no. 4, pp. 210–221. https://doi.org/10.17285/0869-7035.00102

    Article  Google Scholar 

  13. Evstifeev, M.I., Krasnov, A.A., Sokolov, A.V., Starosel’tseva, I.M., Elinson, L.S., Zheleznyak, L.K., and Koneshov, V.N., A new generation of gravimetric sensors, Measurement Techniques, 2014, vol. 57, no. 9, pp. 967–972. https://doi.org/10.1007/s11018-014-0567-0

    Article  Google Scholar 

  14. Sokolov, A.V., Krasnov, A.A., A modern software system of a mobile Chekan-AM gravimeter, Gyroscopy and Navigation, 2015, vol. 6, no. 4, pp. 278–287. https://doi.org/10.1134/S2075108715040082

    Article  Google Scholar 

  15. Sandwell, D.T., Harper, H., Tozer, B., and Smith, W.H.F., Gravity field recovery from geodetic altimeter missions, Advances in Space Research, 2021, vol. 68, no. 2, pp. 1059–1072. https://doi.org/10.1126/science.1258213

    Article  Google Scholar 

  16. Yao Yu, Sandwell, D.T., Gille, S.T., and Villas Boas, A.B., Assessment of ICESat-2 for the recovery of ocean topography, Geophysical J. International, 2021, vol. 226, no. 1, pp. 456–467. https://doi.org/10.1016/j.asr.2019.09.011

    Article  Google Scholar 

  17. Balmino, G., Vales, N., Bonvalot, S., and Briais, A., Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies, J. Geodesy, 2012, vol. 86, no. 7, pp. 499–520. https://doi.org/10.1007/s00190-011-0533-4

    Article  Google Scholar 

  18. Ryzhova, D.A., Kosnyreva, M.V., Dubinin, E.P., and Bulychev, A.A., Geological and geophysical structure of the tectonosphere of the Mozambique and Madagascar ridges, Geofizicheskie issledovaniya, 2021, vol. 22, no. 3, pp. 53–69. https://doi.org/10.21455/gr2021.3-4

  19. Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E., and Francis, R., New global marine gravity from CryoSat-2 and Jason-1 reveals buried tectonic structure, Science, 2014, vol. 346, no. 6205, pp. 65–67. https://doi.org/10.1126/science.1258213

    Article  Google Scholar 

Download references

Funding

The work was carried out with the financial support of the Russian Science Foundation, grant no. 22-17-20035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Mikhailov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, P.S. Use of Marine Gravimetric Survey Data for Correcting the Satellite Models of the Global Gravity Field in the World Ocean. Gyroscopy Navig. 14, 225–233 (2023). https://doi.org/10.1134/S2075108723030057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108723030057

Keywords:

Navigation