Skip to main content

Advertisement

Log in

Evaluation of latest marine gravity field models derived from satellite altimetry over the Gulf of Guinea (Central Africa) with shipborne gravity data

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The marine gravity field is vital for mapping various submarine geological and tectonic structures, also for computation of high-resolution gravimetric geoid. This study aims to evaluate the accuracy of two latest high-resolution marine gravity models derived from satellite altimetry (DTU17 and SSv27.1) using shipborne gravity data and to pruduce high-precision gravity field over the Gulf of Guinea. The gross-errors affecting the shipborne gravity data have been removed by cross-validation technique to ensure better evaluation of gravity field models. The standard deviation σ of the differences between the measured and model gravity data drops from 9.96 mGal before the cross-validation to 6.28 mGal after this process. The comparison between the DTU17 and SSv27.1 gravity field models has been done in order to detect significant differences between them. The differences between the two models are quite small with a mean of 1.73 mGal and σ of 6.55 mGal. The discrepancies between them are found around coastal areas and along islands. This shows the poor accuracy of satellite altimetry near coastal areas. Afterwards, the accuracy of each marine gravity field models was evaluated using shipborne gravity data free of gross-errors. The SSv27.1 model fits better to the shipborne gravity data with a mean of −4.88 mGal and σ of 7.18 mGal. Hence, the SSv27.1 model has a better performance than the DTU17 model on the Gulf of Guinea. Finally, we used the least-squares collocation technique associated to the Markov model of second-order covariance to combine the SSv27.1 model with the shipborne gravity data. We produced here a marine gravity field of good accuracy around the Gulf of Guinea with no data gaps. The precision of this combined gravity field is estimated to be 5.54 mGal with a spatial resolution of 1 arc-minute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amos M.J., Featherstone W.E. and Brett J., 2005. Crossover adjustment of New Zealand marine gravity data, and comparisons with satellite altimetry and global geopotential models. In: Jekeli C., Bastos L. and Fernandes J. (Eds), Gravity, Geoid and Space Missions. International Association of Geodesy Symposia 129, Springer-Verlag, Berlin, Germany, 266–271, DOI: https://doi.org/10.1007/3-540-26932-0_46

    Chapter  Google Scholar 

  • Andersen O.B. and Knudsen P., 2019. The DTU17 global marine gravity field: first validation results. In: Mertikas S. and Pail R. (Eds), Fiducial Reference Measurements for Altimetry. International Association of Geodesy Symposia 150. Springer, Cham, Switzerland, 83–87, DOI: https://doi.org/10.1007/1345_2019_65

    Chapter  Google Scholar 

  • Andersen O.B, Knudsen P., Kenyon S., Factor J.K. and Holmes S., 2017. Global gravity field from recent satellites (DTU15) — Arctic improvements. First Break, 35, 37–40, DOI: https://doi.org/10.3997/1365-2397.2017022

    Article  Google Scholar 

  • Arlot S. and Celisse A., 2010. A survey of cross-validation procedures for model selection. Statist. Surv., 4, 40–79, DOI: https://doi.org/10.1214/09-SS054

    Article  Google Scholar 

  • Barzaghi R., Carrion D., Vergos G.S., Tziavos I.N., Grigoriadis V.N., Natsiopoulos D.A., Bruinsma S. et al., 2018. GEOMED2: High-resolution geoid of the Mediterranean. In: Freymueller J. and Sánchez L. (Eds), International Symposium on Advancing Geodesy in a Changing World. International Association of Geodesy Symposia 149. Springer, Cham, Switzerland, DOI: https://doi.org/10.1007/1345_2018_33

    Chapter  Google Scholar 

  • Behnabian B., Hossainali M.M. and Malekzadeh A., 2018. Simultaneous estimation of cross-validation errors in least squares collocation applied for statistical testing and evaluation of the noise variance components. J. Geodesy, 92, 1329–1350, DOI: https://doi.org/10.1007/s00190-018-1122-9

    Article  Google Scholar 

  • Browne J.D. and Fairhead J.D., 1983. Gravity study of the Central African Rift system: a model of continental disruption, 1, The Ngaoundere and Abu Gabra Rifts. Tectonophysics, 94, 187–203

    Article  Google Scholar 

  • Burke K., Dessauvagie T.F.J. and Whiteman A.J., 1971. Opening of the Gulf of Guinea and geological history of the Benue Depression and Niger delta. Nature Phys. Sci., 233, 51–55

    Article  Google Scholar 

  • Denker H. and Roland M., 2005. Compilation and evaluation of a consistent marine gravity data set surrounding Europe. In: Sansò F. (Ed.), A window on the future of geodesy. International Association of Geodesy Symposia 128. Springer-Verlag, Berlin, Heidelberg, Germany, 248–253, DOI: https://doi.org/10.1007/3-540-27432-4_42

    Chapter  Google Scholar 

  • Drewes H., Hornik H., Adam J. and Rósza S., 2012. IAG Geodesist’s Handbook. International Association of Geodesy (https://www.iag-aig.org/geodesists-handbook/24)

  • Fairhead J.D., Green C.M., and Odegard M.E., 2001. Satellite-derived gravity having an impact on marine exploration. The Leading Edge, 20, 873–876, DOI: https://doi.org/10.1190/1.1487298

    Article  Google Scholar 

  • Featherstone W.E., 2002. Comparison of different satellite altimeter-derived gravity anomaly grids with ship-borne gravity data around Australia. Tziavos I.N. (Ed.), Gravity and Geoid 2002. Ziti Editions, Thessaloniki, Greece, 326–331

  • Featherstone W.E. and Sproule D.M., 2006. Fitting AUSGeoid98 to the Australian Height Datum using GPS data and least squares collocation: Application of a cross-validation technique. Surv. Rev., 38, 573–582, DOI: https://doi.org/10.1179/sre.2006.38.301.573

    Article  Google Scholar 

  • Forsberg R. and Tscherning C.C., 2008. An Overview Manual for the GRAVSOFT. Geodetic Gravity Field Modelling Programs. 1st Edition. Contract Report for JUPEM. DTU and University of Copenhagen, Denmark.

    Google Scholar 

  • Girishbai D. and Bhadran A. 2018. An integrated approach on satellite geodesy data to delineate morphotectonic and neotectonic activities in the West Coast off Kerala, Southern India. Russ. J. Earth. Sci., 18, ES2003, DOI: https://doi.org/10.2205/2018ES000617

    Article  Google Scholar 

  • Green C.M., Fletcher K.M.U., Cheyney S., Dawson G.J. and Campbell, S.J., 2018. Satellite gravity — enhancements from new satellites and new altimeter technology. Geophys. Prospect., 67, 1611–1619, DOI: https://doi.org/10.1111/1365-2478.12697

    Article  Google Scholar 

  • Kamguia J., Tabod C.T., Nouayou R., Tadjou J.M., Manguelle-Dicoum E. and Kande H.L., 2007. The local geoid model of Cameroon, CGM05. Nordic Journal of Surveying and Real Estate Research, 4 (2), 7–23.

    Google Scholar 

  • Kamto P.G., Yap L., Zanga A.A., Kande H.L., Nguiya S. and Kamguia J., 2021. Evaluation of global gravity field models using shipborne free-air gravity anomalies over the Gulf of Guinea, Central Africa. Surv. Rev., DOI: https://doi.org/10.1080/00396265.2021.1921519

  • Krige D.G., 1978. Geostatistics for Ore Evaluation. South African Institute of Mining and Metallurgy, Johannesburg, South Africa

    Google Scholar 

  • Li X. and Götze H.J., 2001. Ellipsoid, geoid, gravity, geodesy, and geophysics. Geophysics, 66, 1660–1668

    Article  Google Scholar 

  • Łyszkowicz A. and Bernatowicz A., 2017. Current state of art of satellite altimetry. Geodesy and Cartography, 66, 259–270, DOI: https://doi.org/10.1515/geocart-2017-0016

    Article  Google Scholar 

  • Matheron G., 1963. Principles of geostatistics. Econ. Geol., 58, 1246–1266, DOI: https://doi.org/10.2113/gsecongeo.58.8.1246

    Article  Google Scholar 

  • Matthews K.J., Müller R.D. and Sandwell D.T., 2016. Oceanic microplate formation records the onset of India-Eurasia collision. Earth Planet. Sci. Lett., 433, 204–214

    Article  Google Scholar 

  • Moritz H., 1980. Advanced Physical Geodesy. Wichmann, Karlsruhe, Grmany

    Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res.-Solid Earth, 117(B4), 2156–2202, DOI: https://doi.org/10.1029/2011JB008916

    Google Scholar 

  • Poudjom-Djomani Y.H., Boukeke D.B., Legeley-Padovani A., Nnange J.M., Albouy Y. and Fairhead J.D., 1996. Levés Gravimétriques de Reconnaissance: Cameroun. Institut Français de Recherche Scientifique pour le Développement en Coopération, Paris, France (in French)

    Google Scholar 

  • Sandwell D., Garcia E., Soofi K., Wessel P., Chandler M. and Smith W., 2013. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. The Leading Edge, 32, 892–899, DOI: https://doi.org/10.1190/t1e32080892.1

    Article  Google Scholar 

  • Sandwell D., Muller R., Smith W., Garcia E. and Francis R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346, 65–67, DOI: https://doi.org/10.1126/science.1258213

    Article  Google Scholar 

  • Strykowski G. and Forsberg R., 1998. Operational merging of satellite, airborne and surface gravity data by draping techniques. In: Forsberg R., Feissel M. and Dietrich R. (Eds), Geodesy on the Move. International Association of Geodesy Symposia 119. Springer-Verlag, Berlin, Heidelberg, Germany, 243–248, DOI: https://doi.org/10.1007/978-3-642-72245-5_35

    Chapter  Google Scholar 

  • USGS, 2017. Shuttle Radar Topography Mission (https://earthexplorer.usgs.gov)

  • Vapnik V. and Chapelle O., 2000. Bounds on error expectation for support vector machines. Neural Comput., 12, 2013–2036, DOI: https://doi.org/10.1162/089976600300015042

    Article  Google Scholar 

  • Wright N.M., Seton M., Williams S.E. and Müller R.D., 2016. The late cretaceous to recent tectonic history of the Pacifc Ocean basin. Earth-Sci. Rev., 154, 138–173

    Article  Google Scholar 

  • Zaki A., Mansi A.H., Selim M., Rabah M. and El-Fiky G., 2018. Comparison of satellite altimetric gravity and global geopotential models with shipborne gravity in the Red Sea. Mar. Geod., 41, 258–269, DOI: https://doi.org/10.1080/01490419.2017.1414088

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Bureau Gravimetrique International (BGI) for providing shipborne gravity data over the study area. We also hank Professor René Forsberg who kindly give us the GRAVSOFT package which allowed us to realize the prediction of gravity data (GEOGRID program). The Technical University of Denmark and the University of California San Diego are appreciated for making global gravity models available free of charge on its web page. We also want to thank the editor and reviewers for their comments on the manuscript. We are also grateful to the geodesy laboratory researchers of the National Institute of Cartography for their different comments and reviews which have helped to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Gautier Kamto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamto, P.G., Yap, L., Nguiya, S. et al. Evaluation of latest marine gravity field models derived from satellite altimetry over the Gulf of Guinea (Central Africa) with shipborne gravity data. Stud Geophys Geod 66, 23–37 (2022). https://doi.org/10.1007/s11200-021-0157-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-021-0157-y

Keywords

Navigation