Skip to main content
Log in

Determining Deflections of the Vertical in the Western Siberia Region: The Results of Comparison

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

At present, information on deflections of the vertical (DOV) is obtained by means of modern global geopotential models. The authors have derived DOV model values in the Western Siberia region. The results of the comparison of the DOV model values calculated with the use of the global geopotential model EIGEN-6C4 and the astrogeodetic measurements taken in the Western Siberia region are analyzed. The study has shown that in plains, standard deviations of DOV model values from the terrestrial data obtained by traditional astrogeodetic method do not exceed 1 arcsec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koneshov, V.N. et al., Accuracy estimation of the global Earth gravity field models, Fizika Zemli, 2014, no. 1, pp. 129–138.

    Google Scholar 

  2. Dmitriev, S.P., Inertsial’nye metody v inzhenernoi geodezii (Inertial Methods in Engineering Geodesy), St. Petersburg, CSRI Elektropribor, 1997.

    Google Scholar 

  3. Mashimov, M.M., Vysshaya geodeziya (Higher Geodesy), Moscow: VIA, 1991.

    Google Scholar 

  4. Zakatov, P.S., Kurs vysshei geodezii (Course of Higher Geodesy), Moscow: Nedra, 1976.

    Google Scholar 

  5. Glazunov, A.S., Modern trends in geodetic astronomy, GEO-SIBIR’-2008, Sb. materialov IV Mezhdunar. nauch. kongressa (GEO-SIBIR’-2008, Proc. IV Int. Scientific Congress), April 22–24, 2008, Novosibirsk: SGGA, 2008, vol. 1: Geodeziya, geoinformatika, kartografiya, marksheideriya (Geodesy, Geoinformatics, Cartography, Mine Surveying), part 1, pp. 183–188.

  6. Teleganov, N.A. and Elagin, A.V., Vysshaya geodeziya i osnovy koordinatno-vremennykh sistem: ucheb. posobie (Higher Geodesy and the Fundamentals of Coordinate-Time Systems), Novosibirsk: SGGA, 2004.

    Google Scholar 

  7. Shimbirev, B.P., Teoriya figury Zemli (Theory of the Figure of the Earth), Moscow: Nedra, 1975.

    Google Scholar 

  8. Rozhkov, Yu.A. et al., Using the results of aerogravimetric measurements to calculate deflections of the vertical in hard-to-reach areas, Fizika Zemli, 2005, no. 2, pp. 84–87.

    Google Scholar 

  9. Koneshov, V.N., Osika, I.V., and Stepanova, I.E., Methods for calculating deflections of the vertical using S-approximations, Fizika Zemli, 2007, no. 6, pp. 19–25.

    Google Scholar 

  10. Boyarskii, E.A. et al., Calculation of vertical deflections and the geoid kurtosis based on gravity anomalies, Fizika Zemli, 2010, no. 6, pp. 80–85.

    Google Scholar 

  11. Koneshov, V.N. et al., Approbation of new methods to calculate deflections of the vertical based on S-and R-approximations in the Atlantic, Fizika Zemli, 2015, no. 1, pp. 128–139.

    Google Scholar 

  12. Gienko, E.G., Strukov, A.A., and Reshetov A.P., Studying the accuracy of normal heights and vertical deflections on the territory of the Novosibirsk region using the global geoid model EGM2008, Interekspo GEO-Sibir’-2011, vol. 1, no. 2, pp. 186–191.

  13. Koneshov, V.N., Nepoklonov, V.B., and Avgustov, L. I., Estimating the navigation informativity of the Earth’s anomalous gravity field for extreme navigation, Aviakosmicheskoe priborostroenie, 2016, no. 3, pp. 22–29.

    Google Scholar 

  14. Tsurikov, A.A., Studying the accuracy of determining the astronomical and geodetic deflections of the vertical with the use of GPS/GLONASS, Izvestiya vuzov. Geodeziya i aerofotos”emka, 2012, no. 2, pp. 13–16.

    Google Scholar 

  15. Hirt, C., Modern determination of vertical deflections using digital zenith cameras, Journal Surveying Engineering, 2010, vol. 136, issue 1, pp. 1–12.

    Article  Google Scholar 

  16. Nepoklonov, V.B., Methods for determining deflections of the vertical and quasigeoid heights using gravity data, In Gravimetriya i geodesia (Gravimetry and Geodesy), Brovar, B.V., Ed., Moscow: Nauchnyi mir, 2010, pp. 455–464.

    Google Scholar 

  17. Peshekhonov, V.G., Stepanov, O.A., Evstifeev, M.I, et al., Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya Zemli (Modern Methods and Means of Measuring the Parameters of the Earth’s Gravitational Field), St. Petersburg: Elektroptibor, 2017.

    Google Scholar 

  18. Karpik, A.P., Kanushin, V.F., Ganagina, I.G., Goldobin, D.N., and Mazurova, E.M., Analyzing spectral characteristics of the global Earth gravity field models obtained from the CHAMP, GRACE and GOCE space missions, Gyroscopy and Navigation, 2015, vol. 6, no. 2, pp. 101–108.

    Article  Google Scholar 

  19. Karpik, A.P. et al., Evaluation of recent Earth’s global gravity field models with terrestrial gravity data, Contributions to Geophysics and Geodesy, 2016, vol. 46, no. 1, pp. 1–11.

    Article  Google Scholar 

  20. Förste, C. et al., EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. http://icgem.gfz-potsdam.de/getmodel/doc/7fd8fe44aa1518cd79ca84300aef4b41ddb2364aef9e82b7cdaabdb60a9053f1

  21. Shako, R. et al., EIGEN-6C: A high-resolution global gravity combination model including GOCE Data, In Observation of the System Earth from Space -CHAMP, GRACE, GOCE and Future Missions. Science Report, 2014, no. 20, pp. 155–161.

    Article  Google Scholar 

  22. Andersen, O.B., Knudsen, P., and Berry, P., DNSC08 mean sea surface and mean dynamic topography models, Journal of Geophysical Research, 2009, vol. 114. doi 10.1029/2008JC005179

  23. Andersen, O.B., The DTU10 gravity field and mean sea surface, Second International Symposium of the Gravity Field of the Earth (IGFS2). http://www.space.dtu.dk/english/Research/Scientific_data_and_-models/Global_Marine_Gravity_Field.

  24. Rukovodstvo pol’zovatelya po vypolneniyu rabot v sisteme koordinat 1995 goda (SK-95). GKINP (GNTA)-06-278-04. (User’s Handbook for Working in the Coordinate System SK-95). Moscow: TsNIIGAiK, 2004.

  25. Parametry Zemli 1990 (PZ 90.11). Spravochnoe rukovodstvo (Parameters of the Earth 1990) (PZ 90.11). Reference Guide, Moscow: Nauchno-issledovatelskii tsentr topogeodezicheskogo i navigatsionnogo obespecheniya “27 TsNII Minoborony Rossii, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Kosarev.

Additional information

Original Russian Text © N.S. Kosarev, V.F. Kanushin, V.I. Kaftan, I.G. Ganagina, D.N. Goldobin, G.N. Efimov, 2017, published in Giroskopiya i Navigatsiya, 2017, No. 4, pp. 72–83.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosarev, N.S., Kanushin, V.F., Kaftan, V.I. et al. Determining Deflections of the Vertical in the Western Siberia Region: The Results of Comparison. Gyroscopy Navig. 9, 124–130 (2018). https://doi.org/10.1134/S2075108718020062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108718020062

Keywords

Navigation