Skip to main content

W 0 Estimates in the Frame of the GGOS Working Group on Vertical Datum Standardisation

  • Conference paper
Gravity, Geoid and Height Systems

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 141))

Abstract

During the 2011 IUGG General Assembly, GGOS, the IAG Commissions 1 (Reference Frames) and 2 (Gravity Field) and the IGFS established a joint working group devoted to the Vertical Datum Standardisation. This working group supports the activities of GGOS Theme 1 Unified Height System; in particular, to recommend a reliable geopotential value W 0 to be introduced as the conventional reference level for the realisation of the GGOS Vertical Reference System. At present, the most commonly accepted W 0 value corresponds to the best estimate available in 2004; however, this value presents discrepancies of about 2 m2 s−2 with respect to recent computations based on the latest Earth’s surface and gravity field models. According to this, as a first approach, four different teams working on the computation of a global W 0 value were brought together in order to compare methodologies and models, and to establish the reliability of the individual computations. Results of this comparison show that the four individual estimates present a maximum discrepancy of about 0.5 m2 s−2. They also confirm that the W 0 value declared as the best estimate in 2004 corresponds to an equipotential surface located about 17 cm beneath the sea surface scanned by satellite altimetry, while the potential value U 0 of the GRS80 ellipsoid realises an equipotential surface located about 67 cm lower. In this context, the need to provide a new better estimate of W 0 is evident.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen OB (2010) The DTU10 gravity field and mean sea surface. Presented at second international symposium of the gravity field of the Earth (IGFS2), Fairbanks, Alaska

    Google Scholar 

  • Andersen OB, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res 114, C11001. doi:10.1029/2008JC005179

    Article  Google Scholar 

  • Andersen OB, Vest AL, Knudsen P (2006) The KMS04 multi-mission mean sea surface. In: Knudsen P, Johannessen J, Gruber T, Stammer S, van Dam T (eds) GOCINA: improving modelling of ocean transport and climate prediction in the north atlantic region using GOCE gravimetry. Cahiers du Centre European de Geodynamique et de Seimologie, Séismologie (ECGS) 2006, vol 25. ISBN: 2-9599804-2-5. http://gocinascience.spacecenter.dk/publications/4_1_kmss04-lux.pdf

  • Becker J, Sandwel D (2003) Accuracy and resolution of shuttle radar topography mission data. Geosphys Res Lett 30(9), 1467. doi:10.1029/2002GL016643

  • Burša M, Šíma Z, Kostelecky J (1992) Determination of the geopotential scale factor from satellite altimetry. Studia geoph et geod 36:101–109

    Article  Google Scholar 

  • Burša M, Radej K, Šíma Z, True S, Vatrt V (1997) Determination of the geopotential scale factor from Topex/Poseidon satellite altimetry. Studia geoph et geod 41:203–215

    Article  Google Scholar 

  • Burša M, Kouba J, Radej K, True S, Vatrt V, Vojtíšková M (1998) Monitoring geoidal potential on the basis of Topex/Poseidon altimeter data and EGM96. IAG Symp 119:352–358

    Google Scholar 

  • Burša M, Kouba J, Kumar M, Müller A, Raděj K, True SA, Vatrt V, Vojtíšková M (1999) Geoidal geopotential and world height system. Studia geoph et geod 43:327–337

    Article  Google Scholar 

  • Burša M, Kouba J, Radej K, Vatrt V, Vojtíšková M (2001) Geopotential at tide gauge stations used for specifying a world height system. Geographic service of the army of the Czech Republic. Acta Geodaetica 1:87–96

    Google Scholar 

  • Burša M, Groten E, Kenyon S, Kouba J, Radej K, Vatrt V, Vojtíšková M (2002) Earth’s dimension specified by geoidal geopotential. Studia geoph et geod 46:1–8

    Google Scholar 

  • Burša M, Kenyon S, Kouba J, Šíma Z, Vatrt V, Vitek V, Vojtíšková M (2007a) The geopotential value Wo for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81:103–110

    Article  Google Scholar 

  • Burša M, Šíma Z, Kenyon S, Kouba J, Vatrt V, Vojtíšková M (2007b) Twelve years of developments: geoidal geopotential Wo for the establishment of a world height system – present and future. In: Proceedings of the 1st international symposium of the international gravity field service, Istanbul, pp 121–123

    Google Scholar 

  • Čunderlík R, Mikula K (2009) Numerical solution of the fixed altimetry-gravimetry BVP using the direct BEM formulation. IAG Symp 133:229–236

    Google Scholar 

  • Čunderlík R, Mikula K, Mojzeš M (2008) Numerical solution of the linearized fixed gravimetric boundary-value problem. J Geod 82:15–29. doi:10.1007/s00190-007-0154-0

    Article  Google Scholar 

  • Dayoub N (2010) The Gauss-Listing gravitational parameter W0 and its time variation from analysis of the sea levels and GRACE. PhD thesis, Geomatics, University of Newcastle

    Google Scholar 

  • Dayoub N, Edwards SJ, Moore P (2012) The Gauss-Listing potential value Wo and its rate from altimetric mean sea level and GRACE. J Geod 86(9):681–694. doi:10.1007/s00190-012-1547-6

    Article  Google Scholar 

  • Drewes H, Hornik H, Ádám J, Rózsa S (eds) (2012) The geodesist’s handbook 2012. J Geod 86(10). doi:10.1007/s00190-012-0584-1

  • Förste C, Flechtner F, Schmidt R, Meyer U, Stubenvoll R, Barthelmes F, König R, Neumayer KH, Rothacher M, Reigber Ch, Biancale R, Bruinsma S, Lemoine J-M, Raimondo JC (2005) A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission and altimetry/gravimetry surface gravity data. Poster g004_EGU05-A-04561.pdf (316 KB) presented at EGU General Assembly 2005, Vienna, Austria, 24–29 April 2005

    Google Scholar 

  • Förste C, Bruinsma S, Shako R, Marty JC, Flechtner F, Abrikosov O, Dahle C, Lemoine JM, Neumayer H, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6 – a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophys Res Abstr 13, EGU2011-3242-2, EGU2011

    Google Scholar 

  • Gauss CF (1876) Trigonometrischen und polygonometrischen Rechnungen in der Feldmesskunst. Halle, a. S. Verlag von Eugen Strien.Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona durch Beobachtungen am ramsdenschen Zenithsektor. In: Carl Friedrich Gauss Werke, neunter Band. Königlichen Gesellschaft der Wissenschaften zu Göttingen (1903) (in German)

    Google Scholar 

  • Groten E (2004) Fundamental parameters and current (2004) best estimates of the parameters of common relevance to astronomy, geodesy and geodynamics. J Geod 77:724–731. doi:10.1007/s00190-003-0373y

    Article  Google Scholar 

  • Heck B (2004) Problems in the definition of vertical reference frames. IAG Symp 127:164–173

    Google Scholar 

  • Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. IAG Symp 104:116–128

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman, San Francisco, CA

    Book  Google Scholar 

  • Hernandes F, Schaeffer Ph (2001) The CLS01 mean sea surface: a validation with the GFSC00.1 surface. www.cls.fr/html/oceano/projects/mss/cls_01_en.html

  • Ihde J (2007) Inter-Commission project 1.2: vertical reference frames. Final report for the period 2003–2007. In: IAG Commission 1 – Reference Frames, Report 2003–2007. DGFI, Munich. Bulletin No 20:57–59

    Google Scholar 

  • Ihde J, Amos M, Heck B, Kearsley W, Schöne T, Sánchez L, Drewes H (2007) Conventions for the definitions and realisation of a conventional vertical reference system (CVRS). http://whs.dgfi.badw.de/fileadmin/user_upload/CVRS_conventions_final_20070629.pdf

  • Kutterer H, Neilan R, Bianco G (2012) Global geodetic observing system (GGOS). In: Drewes H, Hornik H, Ádám J, Rózsa S (eds) The geodesist’s handbook 2012. J Geod 86(10):915–926. doi:10.1007/s00190-012-0584-1

  • Lemoine F, Kenyon S, Factor J, Trimmer R, Pavlis N, Chinn D, Cox C, Kloslo S, Luthcke S, Torrence M, Wang Y, Williamson R, Pavlis E, Rapp R, Olson T (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA, Goddard Space Flight Center, Greenbelt

    Google Scholar 

  • Mather RS (1978) The role of the geoid in four-dimensional geodesy. Mar Geod 1:217–252

    Article  Google Scholar 

  • Mayer-Gürr T, Rieser D, Hoeck E, Brockmann JM, Schuh WD, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber Th (2012) The new combined satellite only model GOCO03S. Presented at the international symposium on gravity, geoid and height systems GGHS 2012, Venice

    Google Scholar 

  • McCarthy DD (1992) IERS standards (1992). IERS Technical Note 13. Central Bureau of IERS – Observatoire de Paris

    Google Scholar 

  • McCarthy DD (1996) IERS conventions (1992). IERS Technical Note 21. Central Bureau of IERS – Observatoire de Paris

    Google Scholar 

  • Menemenlis D, Campin J, Heimbach P, Hill C, Lee T, Nguyen A, Schodlock M, Zhang H (2008) ECCO2: high resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter 31:13–21

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133

    Article  Google Scholar 

  • Pavlis N-K, Holmes SA, Kenyon SC, Factor JK (2012) The development of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117, B04406. doi:10.1029/2011JB008916

    Google Scholar 

  • Petit G, Luzum B (eds) (2010) IERS conventions 2010. IERS Technical Note 36. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt a.M.

    Google Scholar 

  • Plag H-P, Pearlman M (2009) Global geodetic observing system: meeting the requirements of a global society. Springer, Berlin

    Book  Google Scholar 

  • Rapp R (1995) Equatorial radius estimates from Topex altimeter data. Publication dedicated to Erwin Groten on the occasion of his 60th anniversary. Publication of the Institute of Geodesy and Navigation (IfEN), University FAF Munich. pp 90–97

    Google Scholar 

  • Rummel R, Teunissen P (1988) Height datum definiton, height datum connection and the role of the geodetic boundary value problem. Bull Géod 62:477–498

    Article  Google Scholar 

  • Sacerdorte F, Sansò F (2001) Wo: a story of the height datum problem. In: Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover. Nr. 241:49–56

    Google Scholar 

  • Sacerdorte F, Sansò F (2004) Geodetic boundary-value problems and the height datum problem. IAG Symp 127:174–178

    Google Scholar 

  • Sánchez L (2007) Definition and realization of the SIRGAS vertical reference system within a globally unified height system. IAG Symp 130:638–645

    Google Scholar 

  • Sánchez L (2008) Approach for the establishment of a global vertical reference level. IAG Symp 132:119–125

    Google Scholar 

  • Sánchez L (2009) Strategy to establish a global vertical reference system. IAG Symp 134:273–278. doi:10.1007/978-642-3-00860-3-42

    Google Scholar 

  • Sánchez L (2012) Towards a vertical datum standardisation under the umbrella of Global Geodetic Observing System. Journal of Geodetic Science 2(4):325–342. doi:10.2478/v10156-012-0002-x

    Article  Google Scholar 

  • Schaeffer P, Faugére Y, Legeais JF, Ollivier A, Guinle T, Picot N (2012) The CNES_CLS11 global mean sea surface computed from 16 years of satellite altimeter data. Mar Geod 35(1):3–19. doi:10.1080/01490419.2012.718231

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers whose comments helped to improve the paper. The Prague Group specially recognizes the support of the grant N62909-12-1-7037, ACO: N62927 ONRG LTR 7037. The work of the Bratislava Group has been supported by the grants APVV-0072-11 and VEGA 1/1063/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sánchez, L. et al. (2014). W 0 Estimates in the Frame of the GGOS Working Group on Vertical Datum Standardisation. In: Marti, U. (eds) Gravity, Geoid and Height Systems. International Association of Geodesy Symposia, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-319-10837-7_26

Download citation

Publish with us

Policies and ethics