Skip to main content
Log in

The state of the art in the development of onboard gravity gradiometers

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The state of the art in the development of onboard gravity gradiometers used for mineral exploration and space missions is discussed; the results of their operation are analyzed. Gradiometer designs using atom interferometry are considered. Prospects for the development of gravity gradiometry for various applications are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DiFrancesco, D., Meyer, T., Christensen, A., and Fitz-Gerald, D., Gravity gradiometry–today and tomorrow, 11th SAGA Biennial Technical Meeting and Exhibition, Swaziland, September 2009, pp. 80–83.

    Google Scholar 

  2. Nerem, R., Jekeli, C., and Kaula, W., Gravity field determination and characteristics: Retrospective and prospective, Geophysical Research, 1995, vol.100, no. B8, pp. 15,053–15,074.

    Article  Google Scholar 

  3. Vol’fson, G.B., State and perspectives of gravity gradiometry, in Primenenie graviinertsial’nykh tekhnologii v geofizike (Gravity-Inertial Technologies in Geophysics), Collected articles and papers, St. Petersburg: Elektropribor, 2002, pp. 90–105).

    Google Scholar 

  4. Vasin, M.G. and Popkov, D.I., Current problems of onboard gravity gradiometry, in Gravimetriya i geodeziya (Gravimetry and Geodesy), Brovar, B.V., Ed., Moscow: Nauchnyi mir, 2010, pp. 570–584.

  5. Jekeli, C., 100 Years of Gravity Gradiometry, Lecture presented in Geological Science 781, Gravimetry, 27 November 2007.

    Google Scholar 

  6. Nabighian, M.N., Ander, M.E., Grauch, V.J.S, Hansen, R.O., LaFehr, T.R., Li, Y., Pearson, W.C., Peirce, J.W., Phillips, J.D., and Ruder, M.E., 75th Anniversary. Historical development of the gravity method in exploration, Geophysics, 2005, vol. 70, no. 6, pp. 63ND–89ND.

    Article  Google Scholar 

  7. Soroka, A.I., On the development of onboard meters of geopotential second derivatives, in Gravimetriya i geodeziya (Gravimetry and Geodesy), Brovar, B.V., Ed., Moscow: Nauchnyi mir, 2010, pp. 300–310.

    Google Scholar 

  8. Peshekhonov, V.G., Underwater navigation problems, Morskoi sbornik, 2006, no. 10, pp. 22–24).

    Google Scholar 

  9. Dzhandzhgava, G.I. and Avgustov, L.I., Map-aided navigation problems. Results of investigations, Proc. of the 6th Russian Scientific and Technical Conference “Sovremennoe sostoyanie i problemy navigatsii i okeanografii” (Modern State and Problems of Navigation and Oceanography), NO-2007, St. Petersburg: GNINGI, 2007, pp. 43–49.

    Google Scholar 

  10. Dransfield, M., Airborne gravity gradiometry in the search for mineral deposits, Proc. of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 2007, pp. 341–354.

    Google Scholar 

  11. DiFrancesco, D., Advances and challenges in the development and deployment of gravity gradiometer systems, EGM 2007 International Workshop Innovation in EM, Grav and Mag Methods: A new Perspective for Exploration, Capri, Italy, April 15–18, 2007.

    Google Scholar 

  12. Albertella, A., Migliaccio, F., and Sansó, F., GOCE: The Earth gravity field by space gradiometry, Celestial Mechanics and Dynamical Astronomy, May 2002, vol. 83, is. 1–4, pp. 1–15.

    Article  MATH  Google Scholar 

  13. Rummel, R., Balmino, G., Johannessen, J., Visser, P., and Woodworth, P., Dedicated gravity field missions–principles and aims, J. Geodynamics, 2002, no. 33, pp. 3–20.

    Article  Google Scholar 

  14. Touboul, P., Foulon, B., Christophe, B., and Marque, J.P., CHAMP, GRACE, GOCE instruments and beyond, geodesy for planet Earth, International Association of Geodesy Symposia 136, 2012, pp. 215–221.

    Google Scholar 

  15. Freeden, W., Michel, V., and Nutz, H., Satellite-tosatellite tracking and satellite gravity gradiometry, J. Engineering Mathematics, 2002, no. 43, pp. 19–56.

    Article  MATH  Google Scholar 

  16. Iafolla, V., Nozzoli, S., and Fiorenza, E., One axis gravity gradiometer for the measurement of Newton’s gravitational constant G, Physics Letters, 2003, no. A 318, pp. 223–233.

    Google Scholar 

  17. Kasevich, M., Donnelly, C., and Overstreet, C., Prospects for improved accuracy in the determination of G using atom interferometry, Depts. of Physics, Applied Physics and EE Stanford University, 2014.

    Google Scholar 

  18. Paik, H., Tests of general relativity in Earth orbit using a superconducting gravity gradiometer, Advances in Space Research, 1989, no. 9, pp. 41–50.

    Article  Google Scholar 

  19. Ogorodova, L.V., Vysshaya geodesia. Part 3. Teoreticheskaya geodesiya (Higher Geodesy. Theoretical Geodesy), Moscow: Geodesy, 2006.

    Google Scholar 

  20. Peshekhonov, V.G., Nesenyuk, L.P., Starosel’tsev, L.P., and Elinson, L.S., Sudovye sredstva izmereniya parametrov gravitatsionnogo polya Zemli (Shipborne Aids Measuring the Parameters of the Earth Gravity Field), Leningrad: Rumb, 1989.

    Google Scholar 

  21. Mumaw, G., Marine 3D full tensor gravity gradiometry. The first five years, Hydro International, September 2004, pp. 38–41.

    Google Scholar 

  22. Starosel’tsev, L.P., Analysis of requirements to gyroscopic stabilization system of gravity gradiometer, Giroskopiya i Navigatsiya, 1995, no. 3, pp. 30–33.

    Google Scholar 

  23. Nesenyuk, L.P., Starosel’tsev, L.P., and Brovko, L.N., Determination of deflection of verticals using inertial navigation systems, Voprosy Korablestroeniya. Seriya “Navigatsiya i Giroskopiya”, 1980, no. 46, pp. 16–22. From the book Pamyati professora L.P. Nesenyuka. Izbrannye trudy i vospominaniya (In Memory of Professor Nesenyuk. Selected Works and Memories), St. Petersburg, 2010, pp. 63–68.)

    Google Scholar 

  24. Maleev, P.I. and Kapustin, I.V., Navigation aids of foreign strategic submarines, in Proc. of the 6th Russian Scientific and Technical Conference “Sovremennoe sostoyanie i problemy navigatsii i okeanografii” (Modern State and Problems of Navigation and Oceanography), NO-2007, St. Petersburg: GNINGI, 2007, pp. 132–139).

    Google Scholar 

  25. Gerber, M.A., Gravity gradiometry: Something new in inertial navigation, Astronautics and Aeronautics, 1978, vol.16, pp.18–26.

    Google Scholar 

  26. Trageser, M., Floated gravity gradiometer, IEEE Transactions on Aerospace and Electronic Systems, 1984, vol. 20, no.4.

    Google Scholar 

  27. Peshekhonov, V.G. and Vol’fson, G.B., Solution to the problem of designing a gravity variometer for operation on a moving platform, Doklady Akademii Nauk, 1996, vol. 351, no. 6, pp. 766–768.

    Google Scholar 

  28. Volfson, G.B., Methods to Solve the Problem of Creating an Onboard Gravity Variometer, D. Sci. Dissertation, 05.11.03, St. Petersburg, 1997.

    Google Scholar 

  29. Krasovskii, A.A., Methods to create onboard rotation gravity gradiometers, Oboronnaya tekhnika, 1983, no. 6, pp. 52–57.

    Google Scholar 

  30. Avgustov, L.I. and Soroka, A.I., Onboard gravity variometer. Development experience and bench test results, Mekhatronika, avtomatizatsiya, upravlenie, 2009, no. 3, pp. 51–56.

    Google Scholar 

  31. Korchak, V., Tuzhikov, E., and Bocharov, L., American program “Critical defence technologies”. Characteristics and contents analysis, Elektronika. Nauka. Tekhnologiya. Biznes, 2013, no. 5, pp. 134–148.

    Google Scholar 

  32. DeGregoria, A., Gravity Gradiometry and Map Matching: An Aid to Aircraft Inertial Navigation Systems, MSDegree Thesis, Air Force Institute of Technology, 2010, p.130.

    Google Scholar 

  33. Lee, J., Kwon, J.H., and Yu, M., Performance evaluation and requirements assessment for gravity gradient referenced navigation, Sensors, 2015, vol. 15, pp. 16833–16847.

    Article  Google Scholar 

  34. Richeson, J.A., Gravity Gradiometer Aided Inertial Navigation within NON-GNSS Environments, PhD Dissertation, University of Maryland, 2008.

    Google Scholar 

  35. Welker, T.C., Pachter, M., and Huffman, R.E., Gravity gradiometer integrated inertial navigation, Proc. 2013 European Control Conference (ECC), July 17-19, 2013, Zürich, Switzerland, pp. 846–851.

    Google Scholar 

  36. Bell, R.E., Gravity gradiometry. A formerly classified technique used to navigate ballistic-missile submarines now helps geologists search for resources hidden underground, Scientific American, June 1998, pp. 74–79.

    Google Scholar 

  37. Annecchione, M.A., Moody, M.V., Carroll, K.A., Dickson, D.B., and Main, B.W., Benefits of a high performance airborne gravity gradiometer for resource exploration, Proc. Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 2007, pp. 889–893.

    Google Scholar 

  38. Mims, J., Selman, D., Dickinson, J., Murphy, C., Mataragio, J., and Jorgensen, G., Comparison study between airborne and shipborne full tensor gravity gradiometry (FTG) Data, SEG Houston 2009 International Exposition and Annual Meeting, 2009, pp. 942–946.

    Google Scholar 

  39. McBarnet, A., Gravity gradiometry has graduated! OE Digital Edition, 2013. URL: http://www.oedigital. com/geoscience/item/3201-gravity-gradiometryhas-graduated.

  40. DiFrancesco, D., Gravity gradiometry developments at Lockheed Martin, EGS -AGU -EUG Joint Assembly, Abstracts from the meeting held in Nice, France, April 2003, abstract #1069.

    Google Scholar 

  41. Murphy, C.A., Recent developments with Air-FTG®, Airborne Gravity 2010, Abstracts from the ASEG-PESA Airborne Gravity 2010 Workshop: Australia, 2010, pp. 142–151.

    Google Scholar 

  42. Dransfield, M., Le Roux, T., and Burrows, D., Airborne gravimetry and gravity gradiometry at Fugro airborne surveys, Airborne Gravity 2010, Abstracts from the ASEG-PESA Airborne Gravity 2010 Workshop: Australia, 2010, pp. 49–57.

    Google Scholar 

  43. Dransfield, M. and Christensen, A.N., Performance of airborne gravity gradiometers, The Leading Edge, August 2013, pp. 908–922.

    Google Scholar 

  44. Christensen, A.N., Dransfield, M.H., and Van Galder, C., Noise and repeatability of airborne gravity gradiometry, First break, April 2015, vol. 33, pp. 55–63.

    Google Scholar 

  45. Jekeli, C., Accuracy requirements in position and attitude for airborne vector gravimetry and gradiometry, Gyroscopy and Navigation, 2011, vol. 2, no. 3, pp. 164–169.

    Article  Google Scholar 

  46. Jekeli, C., Airborne gradiometry error analysis, Surveys in Geophysics, 2006, pp. 257–275.

    Google Scholar 

  47. Dransfield, M., Advances in airborne gravity gradiometry at Fugro airborne surveys, Proc. EGM 2010 International Workshop. Adding new value to Electromagnetic, Gravity and Magnetic Methods for Exploration, Capri, Italy, April 11–14, 2010.

    Google Scholar 

  48. Lumley, J.M., White, J.P., Barnes, G., Huang, D., and Paik, H.J., A superconducting gravity gradiometer tool for exploration, Proc. Society of Exploration Geophysics Meeting, San Antonio, September 2001.

    Google Scholar 

  49. Matthews, R., Mobile Gravity Gradiometry, PhD Dissertation, University of Western Australia, 2002.

    Google Scholar 

  50. Van Leeuwen, E., Three years of practical use of airborne gravity gradiometer, Geophysical Research Abstracts, 2003, vol. 5, p.22.

    Google Scholar 

  51. Tryggvason, B., Main, B., and French, B., A high resolution airborne gravimeter and airborne gravity gradiometer, Proc. Airborne Gravity 2004 Workshop, 2004, pp. 41–47.

    Google Scholar 

  52. Anstie, J., Aravanis, T., Johnston, P., Mann, A., Longman, M., Sergeant, A., Smith, R., Van Kann, F., Walker, G., Wells, G., and Winterflood, J., Preparation for flight testing the VK1 gravity gradiometer, Airborne Gravity 2010, Abstracts from the ASEG-PESA Airborne Gravity 2010 Workshop: Australia, 2010, pp. 5–12.

    Google Scholar 

  53. Chan, H.A. and Paik, H.J., Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory, Phys. Rev. D, 1987, pp. 3551–3571.

    Google Scholar 

  54. Carroll, K.A., Hatch, D., and Main, B., Performance of the Gedex high-definition airborne gravity gradiometer, Airborne Gravity 2010, Abstracts from the ASEGPESA Airborne Gravity 2010 Workshop: Australia, 2010, pp. 37–43.

    Google Scholar 

  55. Airborne Gravity 2016 (W10), Adelaide, Australia, August 2016. URL: http://www.conference. aseg.org.au/PDF/W10.pdf

  56. Moody, M., Paik, H., and Canavan, E., Three-axis superconducting gravity gradiometer for sensitive gravity experiments, Rev. Sci. Instrum. 73, 3957 (2002); URL: http://dx.doi.org/ doi 10.1063/1.151179810. 1063/1.1511798

    Article  Google Scholar 

  57. Rummel, R., Yi, W., and Stummer, C., GOCE gravitational gradiometry, Journal of Geodesy, November 2011, vol. 85, no. 11, pp. 777–790.

    Article  Google Scholar 

  58. Brown, D., Mauser, L., Young, B., Kasevich, M., Rice, H.F., and Benischek, V., Atom interferometric gravity gradiometer system, Proc. 2012 IEEE/ION Position, Location and Navigation Symposium, PLANS-2012, pp. 30–37.

    Chapter  Google Scholar 

  59. Mahadeswaraswamy, C., Atom Interferometric Gravity Gradiometer: Disturbance Compensation and Mobile Gradiometry, PhD Dissertation, Stanford University, 2009.

    Google Scholar 

  60. Wu, X., Gravity Gradient Survey with a Mobile Atom Interferometer, PhD Dissertation, Stanford University, 2009.

    Google Scholar 

  61. Yu, N., Kohel, J.M., Ramerez-Serrano, J., Kellogg, J.R., Lim, L., and Maleki, L., Progress Towards a Space-borne Quantum Gravity Gradiometer, Jet Propulsion Laboratory, California Institute of Technology, 2005. URL: https://esto.nasa.gov/2012test/conferences/ estc2005/papers/b1p5.1.pdf

    Google Scholar 

  62. McGuirk, J.M., High Precision Absolute Gravity Gradiometry with Atom Interferometry, PhD Dissertation, Stanford University, 2001.

    Google Scholar 

  63. Yu, N., Thompson, R.J., Kellogg, J.R., Aveline, D.C., Maleki, L., and Kohel, J.M., A transportable gravity gradiometer based on atom interferometry, NASA Tech Briefs, NASA’s Jet Propulsion Laboratory, Pasadena, California, May 2010, pp. 6–7.

    Google Scholar 

  64. Carraz, O., Siemes, C., Massotti, L., Haagmans, R., and Silvestrin, P., A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth’s gravity field, Microgravity Sci. Technol., 2014, pp. 139–145.

    Google Scholar 

  65. Kohel, J.M., Yu, N., Kellogg, J.R., Thompson, R.J., Aveline, D.C., and Maleki, L., Quantum gravity gradiometer development for space, Jet Propulsion Laboratory, California Institute of Technology. URL: https://esto.nasa.gov/conferences/ estc2006/papers/b4p1.pdf.

  66. Griggs, C.E., Paik, H.J., Moody, M.V., Han, S.-C., Rowlands, D.D., Lemoine, F.G., Shirron, P.J., and Li, X., Tunable superconducting gravity gradiometer for Mars climate, atmosphere and gravity field investigation, Proc. 46th Lunar and Planetary Science Conference, 2015, 1735.pdf.

    Google Scholar 

  67. Golden, H., McRae, W., and Veryaskin, A., Description of and results from a novel borehole gravity gradiometer, ASEG Extended Abstracts 2007, pp. 1–3.

    Google Scholar 

  68. Veryaskin, A., String gravity gradiometer: Noise, error analysis and applications, Geophysical Research Abstract, 2003, vol. 5, 01650.

    Google Scholar 

  69. Flokstra, J., Cupurus, R., Wiegerink, R.J., and Essen van, M.C., A MEMS based gravity gradiometer for future planetary missions, Cryogenics, 2009, vol. 49, p. 665–668.

    Article  Google Scholar 

  70. Liu, H., Pike, W.T., and Dou, G., Design, fabrication and characterization of a micro-machined gravity gradiometer suspension, Proc. IEEE SENSORS 2014, Valencia, 2–5 Nov. 2014, pp.1611–1614.

    Chapter  Google Scholar 

  71. Lenoir, B., Levy, A., Foulon, B., Christophe, B., Lamine, B., and Reynaud, S., Electrostatic accelerometer with bias rejection for gravitation and solar system physics, Advances in Space Research, 2011, vol. 48, is. 7, pp. 1248–1257.

    Article  Google Scholar 

  72. URL: http://www.lockheedmartin.com/us/mst/features/2010/100714-using-gravity-to-detect-underground-threats-.html.

  73. Neill, F., Potentials of wellbore gravity gradiometry, Neftegazovye tekhnologii, 2010, no. 6, pp. 20–24.

    Google Scholar 

  74. Vol’fson, G.B., Evstifeev, M.I., Rozentsvein, V.G., Semenova, M.P., Nikol’skii, Yu.I., Rokotyan, E.V., and Bezrukov, S.F., The new generation of gravity variometers for geophysical research, Geofizicheskaya apparatura, 1999, no. 102, pp. 90–105.

    Google Scholar 

  75. Kirkendall, B., Li, Y., and Oldenburg, D., Imaging cargo containers using gravity gradiometry, IEEE Transactions on Geoscience and Remote Sensing, 2007, vol. 45, no. 6, pp. 1786–1797.

    Article  Google Scholar 

  76. Vol’fson, G. B., Evstifeev, M. I., Kazantseva, O. S., Kalinnikov, I. I., Manukin, A. B., Matyunin, V. P., and Shcherbak, A.G., Gradiometric seismoreceiver with a magnetic suspension in the problems of operative earthquake forecasting, Seismic instruments, 2010, vol. 46, no. 3, pp. 265–274.

    Article  Google Scholar 

  77. Kalinnikov, I.I. and Matyunin, V.P., Early earthquake prediction in teleseismic zone–A reality, Doklady Akademii Nauk, 1992, vol. 232, no. 6, pp. 1068–1071.

    Google Scholar 

  78. Zlotnikov, D., Superior detective work: The promise of airborne gravity gradiometry, Earth Explorer, Energy Report, June 2011, pp. 5–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Evstifeev.

Additional information

Original Russian Text © M.I. Evstifeev, 2016, published in Giroskopiya i Navigatsiya, 2016, No. 3, pp. 96–114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evstifeev, M.I. The state of the art in the development of onboard gravity gradiometers. Gyroscopy Navig. 8, 68–79 (2017). https://doi.org/10.1134/S2075108717010047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108717010047

Navigation