Skip to main content
Log in

A mobile high-precision absolute gravimeter based on atom interferometry

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

We present the new mobile and robust gravimeter GAIN (Gravimetric Atom Interferometer), which is based on interfering ensembles of laser cooled 87Rb atoms in an atomic fountain configuration. With a targeted accuracy of a few parts in 1010 for the measurement of local gravity, g, this instrument should offer about an order of magnitude improvement in performance over the best currently available absolute gravimeters. Together with the capability to perform measurements directly at sites of geophysical interest, this will open up the possibility for a number of interesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carnal, O. and Mlynek, J., Youngs Double-Slit Experiment with Atoms — A Simple Atom Interferometer, Phys. Rev. Lett., 1991, vol. 66, no. 21, pp. 2689–2692.

    Article  Google Scholar 

  2. Riehle, F., Kisters, T., Witte, A., Helmcke, J., and Borde, C., Optical Ramsey Spectroscopy in a Rotating Frame-Sagnac Effect in a Matter-Wave Interferometer, Phys. Rev. Lett., 1991, vol. 67, no. 2, pp. 177–180.

    Article  Google Scholar 

  3. Keith, D., Ekstrom, C., Turchette, Q., and Pritchard, D., An Interferometer for Atoms, Phys. Rev. Lett., 1991, vol. 66, no. 21, pp. 2693–2696.

    Article  Google Scholar 

  4. Kasevich, M. and Chu, S., Atomic Interferometry Using Stimulated Raman Transitions, Phys. Rev. Lett., 1991, vol. 54, no. 2, pp. 181–184.

    Article  Google Scholar 

  5. de Angelis, M., Bertoldi, A., Cacciapuoti, L., Giorgini, A., Lamporesi, G., Prevedelli, M., Saccorotti, G., Sorrentino, F., and Tino, G.M., Precision Gravimetry with Atomic Sensors, Meas. Sci. Technol., 2009, vol. 20, no. 2, p. 022001.

    Article  Google Scholar 

  6. Peters, A., Chung, K., and Chu, S., High-Precision Gravity Measurements Using Atom Interferometry, Metrologia, 2001, vol. 38, no. 1, pp. 25–61.

    Article  Google Scholar 

  7. Le Gouet, J., Mehlstaeubler, T.E., Kim, J., Merlet, S., Clairon, A., Landragin, A., and Dos Santos, F.P., Limits to the Sensitivity of a Low Noise Compact Atomic Gravimeter, Appl. Phys. B, 2008, vol. 92, no. 2, pp. 133–144.

    Article  Google Scholar 

  8. Stern, G., Battelier, B., Geiger, R., Varoquaux, G., Villing, A., Moron, F., Carraz, O., Zahzam, N., Bidel, Y., Chaibi, W., Dos Santos, F.P., Bresson, A., Landragin, A., and Bouyer, P., Light-Pulse Atom Interferometry in Microgravity, Eur. Phys. J. D, 2009, vol. 53, no. 3, pp. 353–357.

    Article  Google Scholar 

  9. Cheinet, P., Pereira Dos Santos, F., Petelski, T., Le Gouet, J., Kim, J., Therkildsen, K.T., Clairon, A., and Landragin, A., Compact Laser System for Atom Interferometry, Appl. Phys. B, 2006, vol. 84, no. 4, pp. 643–646.

    Article  Google Scholar 

  10. Merlet, S., Bodart, Q., Malossi, N., Landragin, A., Pereira Dos Santos, F., Gitlein, O., and Timmen, L., Comparison between Two Mobile Absolute Gravimeters: Optical Versus Atomic Interferometers, Metrologia, 2010, vol. 47, no. 4, pp. L9–L11.

    Article  Google Scholar 

  11. Bordé, C. J., Atomic Interferometry with Internal State Labeling, Phys. Lett. A, 1989, vol. 140, nos. 1–2, pp. 10–20.

    Article  Google Scholar 

  12. Hensley, J.M., Peters, A., and Chu, S., Active Low Frequency Vertical Vibration Isolation, Rev. Sci. Instrum., 1999, vol. 70, no. 6, pp. 2735–2741.

    Article  Google Scholar 

  13. van Zoest T., Gaaloul, N., Singh, Y., Ahlers, H., Herr, W., Seidel, S.T., Ertmer, W., Rasel, E., Eckart, M., Kajari, E., Arnold, S., Nandi, G., Schleich, W.P., Walser, R., Vogel, A., Sengstock, K., Bongs, K., Lewoczko-Adamczyk, W., Schiemangk, M., Schuldt, T., Peters, A., Koenemann, T., Muentinga, H., Laemmerzahl, C., Dittus, H., Steinmetz, T., Haensch, T.W., and Reichel, J., Bose-Einstein Condensation in Microgravity, Science, 2010, vol. 328, no. 5985, pp. 1540–1543.

    Article  Google Scholar 

  14. Baillard, X., Gauguet, A., Bize, S., Lemonde, P., Laurent, P., Clairon, A., and Rosenbusch, P., Interference-Filter-Stabilized External-Cavity Diode Lasers, Opt. Comm., 2006, vol. 266, no. 2, pp. 609–613.

    Article  Google Scholar 

  15. Supplee, J., Whittaker, E., and Lenth, W., Theoretical Description of Frequency-Modulation and Wavelength Modulation Spectroscopy, Appl. Opt., 1994, vol. 33, no. 27, pp. 6294–6302.

    Article  Google Scholar 

  16. Bodart, Q., Merlet, S., Malossi, N., Pereira Dos Santos, F., Bouyer, P., and Landragin, A., A Cold Atom Pyramidal Gravimeter with a Single Laser Beam, Appl. Phys. Lett., 2010, vol. 96, no. 13, p. 134101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M., Senger, A., Hauth, M. et al. A mobile high-precision absolute gravimeter based on atom interferometry. Gyroscopy Navig. 2, 170–177 (2011). https://doi.org/10.1134/S2075108711030102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108711030102

Keywords

Navigation