Skip to main content
Log in

Measuring the gravitational acceleration with matter-wave velocimetry

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

One of the major limitations of atomic gravimeters is represented by the vibration noise of the measurement platform, which cannot be distinguished from the relevant acceleration signal. In this paper we perform atom interferometry measurements of the gravitational acceleration with high resolution without any need for a vibration isolation system or post-corrections based on seismometer data monitoring the residual accelerations at the sensor head. Using two different schemes, a Ramsey and a Ramsey–Bordé interferometer, we measure the velocity variation of freely falling cold atom samples, thus determining the gravitational acceleration experienced by them. Our instrument has a fractional stability of 2.7 × 10−6 at 1 s of integration time, more than one order of magnitude better than a standard Mach–Zehnder interferometer when operated without any vibration isolation or applied post-correction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Tino, M.A. Kasevich (Eds.), Atom Interferometry (SIF and IOS Press, Bologna, Amsterdam, 2014)

  2. M. Kasevich, S. Chu, Appl. Phys. B 54, 321 (1992)

    Article  ADS  Google Scholar 

  3. A. Peters, K. Yeow, S. Chu, Nature 400, 849 (1999)

    Article  ADS  Google Scholar 

  4. H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, K.Y. Chung, Phys. Rev. Lett. 100, 031101 (2008)

    Article  ADS  Google Scholar 

  5. J.L. Gouët, T. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, F.P. DosSantos, Appl. Phys. B 92, 133 (2008)

    Article  ADS  Google Scholar 

  6. R. Karcher, A. Imanaliev, S. Merlet, F.P. DosSantos, New J. Phys. 20, 113041 (2018)

    Article  ADS  Google Scholar 

  7. T.L. Gustavson, P. Bouyer, M.A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997)

    Article  ADS  Google Scholar 

  8. T.L. Gustavson, A. Landragin, M.A. Kasevich, Class. Quant. Grav. 17, 2385 (2000)

    Article  ADS  Google Scholar 

  9. B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C.J. Bordé, A. Landragin et al., Phys. Rev. Lett. 97, 010402 (2006)

    Article  ADS  Google Scholar 

  10. A. Gauguet, B. Canuel, T. Lévèque, W. Chaibi, A. Landragin, Phys. Rev. A 80, 063604 (2009)

    Article  ADS  Google Scholar 

  11. I. Dutta, D. Savoie, B. Fang, B. Venon, C.L. Garrido Alzar, R. Geiger, A. Landragin, Phys. Rev. Lett. 116, 183003 (2016)

    Article  ADS  Google Scholar 

  12. M.J. Snadden, J.M. McGuirk, P. Bouyer, K.G. Haritos, M.A. Kasevich, Phys. Rev. Lett. 81, 971 (1998)

    Article  ADS  Google Scholar 

  13. J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M.A. Kasevich, Phys. Rev. A 65, 033608 (2002)

    Article  ADS  Google Scholar 

  14. F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.H. Lien, M. Prevedelli, G. Rosi, L. Salvi, G.M. Tino, Phys. Rev. A 89, 023607 (2014)

    Article  ADS  Google Scholar 

  15. X.C. Duan, M.K. Zhou, D.K. Mao, H.B. Yao, X.B. Deng, J. Luo, Z.K. Hu, Phys. Rev. A 90, 023617 (2014)

    Article  ADS  Google Scholar 

  16. F.P.D. Santos, Phys. Rev. A 91, 063615 (2015)

    Article  ADS  Google Scholar 

  17. Y.P. Wang, J.Q. Zhong, X. Chen, R.B. Li, D.W. Li, L. Zhu, H.W. Song, J. Wang, M.S. Zhan, Opt. Commun. 375, 34 (2016)

    Article  ADS  Google Scholar 

  18. G. D’Amico, G. Rosi, S. Zhan, L. Cacciapuoti, M. Fattori, G.M. Tino, Phys. Rev. Lett. 119, 253201 (2017)

    Article  ADS  Google Scholar 

  19. G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, G.M. Tino, Phys. Rev. Lett. 114, 013001 (2015)

    Article  ADS  Google Scholar 

  20. P. Asenbaum, C. Overstreet, T. Kovachy, D.D. Brown, J.M. Hogan, M.A. Kasevich, Phys. Rev. Lett. 118, 183602 (2017)

    Article  ADS  Google Scholar 

  21. M.G. Tarallo, T. Mazzoni, N. Poli, D.V. Sutyrin, X. Zhang, G.M. Tino, Phys. Rev. Lett. 113, 023005 (2014)

    Article  ADS  Google Scholar 

  22. D. Schlippert, J. Hartwig, H. Albers, L.L. Richardson, C. Schubert, A. Roura, W.P. Schleich, W. Ertmer, E.M. Rasel, Phys. Rev. Lett. 112, 203002 (2014)

    Article  ADS  Google Scholar 

  23. L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, M. Zhan, Phys. Rev. Lett. 115, 013004 (2015)

    Article  ADS  Google Scholar 

  24. X.C. Duan, X.B. Deng, M.K. Zhou, K. Zhang, W.J. Xu, F. Xiong, Y.Y. Xu, C.G. Shao, J. Luo, Z.K. Hu, Phys. Rev. Lett. 117, 023001 (2016)

    Article  ADS  Google Scholar 

  25. G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, G.M. Tino, Nat. Commun. 8, 15529 (2017)

    Article  ADS  Google Scholar 

  26. M. de Angelis, A. Bertoldi, L. Cacciapuoti, A. Giorgini, G. Lamporesi, M. Prevedelli, G. Saccorotti, F. Sorrentino, G.M. Tino, Meas. Sci. Technol. 20, 022001 (2009)

    Article  Google Scholar 

  27. S. Merlet, J.L. Gouët, Q. Bodart, A. Clairon, A. Landragin, F.P.D. Santos, P. Rouchon, Metrologia 46, 87 (2009)

    Article  ADS  Google Scholar 

  28. R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, P. Bouyer, Nat. Commun. 2, 474 (2011)

    Article  ADS  Google Scholar 

  29. P. Cheiney, L. Fouché, S. Templier, F. Napolitano, B. Battelier, P. Bouyer, B. Barrett, Phys. Rev. Appl. 10, 034030 (2018)

    Article  ADS  Google Scholar 

  30. F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.H. Lien, M. Prevedelli, G. Rosi, G.M. Tino, Appl. Phys. Lett. 101, 114106 (2012)

    Article  ADS  Google Scholar 

  31. C.J. Bordé, Phys. Lett. A 140, 10 (1989)

    Article  ADS  Google Scholar 

  32. R.H. Parker, C. Yu, W. Zhong, B. Estey, H. Müller, Science 360, 191 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Cadoret, E. de Mirandes, P. Cladé, S. Guellati-Khelifa, C. Schwob, F. Nez, L. Julien, F. Biraben, Phys. Rev. Lett. 101, 230801 (2008)

    Article  ADS  Google Scholar 

  34. M. Andia, R. Jannin, F. Nez, F. Biraben, S. Guellati-Khélifa, P. Cladé, Phys. Rev. A 88, 031605(R) (2013)

    Article  ADS  Google Scholar 

  35. P. Cheinet, B. Canuel, F.P.D. Santos, A. Gauguet, F. Yver-Leduc, A. Landragin, IEEE Trans. Instrum. Meas. 57, 1141 (2008)

    Article  Google Scholar 

  36. G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, G.M. Tino, Phys. Rev. A 93, 063628 (2016)

    Article  ADS  Google Scholar 

  37. A. Peters, Metrologia 38, 25 (2001)

    Article  ADS  Google Scholar 

  38. A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, F.P.D. Santos, New J. Phys. 13, 065025 (2011)

    Article  ADS  Google Scholar 

  39. M. Cadoret, E. de Mirandes, P. Cladé, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, F. Biraben, Phys. Rev. A 85, 013639 (2012)

    Article  ADS  Google Scholar 

  40. T. Kovachy, P. Asenbaum, C. Overstreet, C.A. Donnelly, S.M. Dickerson, A. Sugarbaker, J.M. Hogan, M.A. Kasevich, Nature 528, 530 (2015)

    Article  ADS  Google Scholar 

  41. G. Ferrari, N. Poli, F. Sorrentino, G.M. Tino, Phys. Rev. Lett. 97, 060402 (2006)

    Article  ADS  Google Scholar 

  42. L. Hu, N. Poli, L. Salvi, G.M. Tino, Phys. Rev. Lett. 119, 263601 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Rosi.

Additional information

Contribution to the Topical Issue “Quantum Technologies for Gravitational Physics”, edited by Tanja Mehlstäubler, Yanbei Chen, Guglielmo M. Tino, Hsien-Chi Yeh

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amico, G., Cacciapuoti, L., Jain, M. et al. Measuring the gravitational acceleration with matter-wave velocimetry. Eur. Phys. J. D 73, 98 (2019). https://doi.org/10.1140/epjd/e2019-90543-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90543-0

Navigation