Skip to main content
Log in

Hot Corrosion Behavior of a Ti–Al–Mo–V–Cr–Zr Titanium Matrix Composite Reinforced with In Situ Multiple Phases (TiB, TiC, and Ti5Si3) Prepared by Spark Plasma Sintering

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, new titanium matrix composites (TMCs) with in situ synthesized multiphase (TiB, TiC, Ti5Si3) hybrid reinforcement were prepared by spark plasma sintering (SPS) using Ti555-type titanium alloy (Ti–5.4Al–4.03Mo–3.93V–2.37Cr–0.01Zr) and B4CP, CNT, and SiCP as primary powders. The effects of different reinforcements on the hot corrosion performance of the materials were investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), and the corrosion weight gain, corrosion thickness and corrosion products were analyzed and tested. The results showed that the corrosion products of the base alloy, TMC1 (3.5 vol % B4CP) and TMC3 (3.5 vol % B4CP + 1.5 vol % CNT) were mainly Al2O3, TiO2, NaTiO2 and TiS2, while TMC2 (3.5 vol % B4CP + 1.5 vol % SiCP), in addition to the above products SiO2 was also detected, which has a good corrosion resistance. Furthermore, the corrosion weight gain and corrosion depth of the matrix, TMC1, TMC3, and TMC2 gradually decreased, with corrosion depths of 49, 37, 23, and 14 μm, respectively, indicating that the corrosion resistance of the composites gradually increased, with TMC2 having the best corrosion resistance and the lowest corrosion weight gain of 10.264 mg cm–2. Throughout the corrosion process, the excellent hot corrosion resistance the degree is TMC2 > TMC3 > TMC1 > matrix in order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Saito, T., J. Met., 2004, vol. 56, p. 33.

    CAS  Google Scholar 

  2. Mu, X.N., Cai, H.N., Zhang, H.M., et al., Mater. Sci. Eng., A, 2018, vol. 725, p. 541.

    Article  CAS  Google Scholar 

  3. Chen, H., Mi, G.B., Li, P.J., et al., Mater. Lett., 2021, vol. 291, p. 129575.

    Article  CAS  Google Scholar 

  4. Ren, L., Xiao, W., Han, W., et al., Mater. Charact., 2018, vol. 144, p. 1.

    Article  CAS  Google Scholar 

  5. Dikovits, M., Poletti, C., and Warchomicka, F., Metall. Mater. Trans. A, 2014, vol. 45, p. 1586.

    Article  CAS  Google Scholar 

  6. Qin, Y., Zhang, D., and Lu, W.J., J. Alloys Compd., 2008, vol. 455, p. 369.

    Article  CAS  Google Scholar 

  7. Jin, J.B., Zhou, S.F., Zhao, Y., et al., Opt. Laser Technol., 2021, vol. 134, p. 106644.

    Article  CAS  Google Scholar 

  8. Ai, T.T., Acta Metall. Sin. (Engl. Lett.), 2008, vol. 21, p. 437.

  9. Falodun, O., Oke, S.R., and Adams, F.V., Mater. Today: Proc., 2019, vol. 18, p. 2250.

    Google Scholar 

  10. Xu, D., Lu, W.J., Yang, Z.F., et al., J. Alloys Compd., 2005, vol. 400, p. 216.

    Article  CAS  Google Scholar 

  11. Ma, Z.Y., Tjong, S., and Gen, L., Scr. Mater., 2000, vol. 42, p. 367.

    Article  Google Scholar 

  12. Choi, B.J. and Kim, Y.J., Met. Mater. Int., 2013, vol. 19, p. 1301.

    Article  CAS  Google Scholar 

  13. Lu, J.Q., Qin, J., Lu, W.J., et al., J. Alloys Compd., 2009, vol. 469, p. 116.

    Article  CAS  Google Scholar 

  14. Kim, Y.J., Yadav, P., Hahn, J., et al., Met. Mater. Int., 2019, vol. 25, p. 627.

    Article  CAS  Google Scholar 

  15. Riley, D.P., Intermetallics, 2006, vol. 14, p. 770.

    Article  CAS  Google Scholar 

  16. Silva, A.A.M., Santos, J.F.D., and Strohaecker, T.R., Compos. Sci. Technol., 2005, vol. 65, p. 1749.

    Article  Google Scholar 

  17. Fan, Z.Y., Niu, H.J., Cantor, B., et al., J. Microsc., 1997, vol. 185, p. 157.

    Article  CAS  Google Scholar 

  18. Delbari, S.A., Namini, A.S., and Asl, M.S., Mater. Today Commun., 2019, vol. 20, p. 100576.

    Article  CAS  Google Scholar 

  19. Huang, L., Qian, M., Wang, L., et al., Mater. Sci. Eng., A, 2017, vol. 708, p. 285.

    Article  CAS  Google Scholar 

  20. Grützner, S., Krüger, L., Radajewski, M., and Schneider, I., Metals, 2018, vol. 8, no. 6, p. 377.

    Article  Google Scholar 

  21. Singh, N., Ummethala, R., Karamched, P.S., et al., J. Alloys Compd., 2021, vol. 865, p. 158875.

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Key Projects of the 13th Five-Year Plan Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China (no. 6140922010201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Xu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jianming Wu, Xu, X., Bai, X. et al. Hot Corrosion Behavior of a Ti–Al–Mo–V–Cr–Zr Titanium Matrix Composite Reinforced with In Situ Multiple Phases (TiB, TiC, and Ti5Si3) Prepared by Spark Plasma Sintering. Prot Met Phys Chem Surf 59, 245–253 (2023). https://doi.org/10.1134/S2070205122060193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122060193

Keywords:

Navigation