Skip to main content
Log in

In-Situ (TiB+TiC) particulate reinforced titanium matrix composites: Effect of B4C size and content

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study investigated the microstructure and tensile behavior of (TiB+TiC) reinforced titanium matrix composites (TMCs) using an in-situ reaction between Ti and B4C. Different B4C sizes (1,500 and 150 μm) and contents (0.94, 1.88 and 3.76 mass%) were added to pure Ti to produce 5, 10, and 20 vol% (TiB+TiC) reinforced TMCs. In-situ synthesized TiB and TiC reinforcements prepared with 150 μm B4C were very fine, and were distributed more homogeneously than the 1,500 μm B4C. As the TiB and TiC contents increased, the tensile strength increased and the ductility decreased compared to unreinforced pure Ti. The improvements in the tensile strength of TMCs were obtained by load transfer strengthening and an alpha-Ti matrix grain reduction of 9–26%. In addition, the TMCs produced using 150 μm B4C showed a greater tensile elongation of approximately 61–117%, with a slightly improved strength compared to that with 1,500 μm B4C. The tensile elongation of TMCs obtained with 150 μm B4C was enhanced because the coarse reinforcements produced by 1,500 μm B4C were more easily and frequently cracked at the fracture surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Clyne, P. J. Withers, An Introduction to Metal Matrix Composites, p.1, Cambridge University Press, UK (1993).

    Book  Google Scholar 

  2. D. B. Miracle, S. L. Donaldson, ASM Handbook Vol. 21 Composites, p.579, ASM International, US (2001).

    Google Scholar 

  3. C. Leyens, M. Peters, Titanium and Titanium Alloys, p. 305, WILEY-VCH, Germany (2003).

    Book  Google Scholar 

  4. G. Luo, Q. Zhen, J. Deng, Titanium ′95: Science and Technology, p. 2704, The Institute of Materials, UK (1995).

    Google Scholar 

  5. S. Abkowitz, S. M. Abkowitz, H. Fisher and P. J. Schwartz, JOM 56, 37 (2004).

    Article  CAS  Google Scholar 

  6. D. R. Ni, Script. Mater. 55, 429 (2006).

    Article  CAS  Google Scholar 

  7. H. T. Tsang, Script. Metall. Mater. 37, 1359 (1997).

    Article  CAS  Google Scholar 

  8. M. G. Cortazar, I. Agote, E. Silveira, P. Egizabal, J. Coleto, and Y. L. Petitcorps, JOM 60, 40 (2008).

    Article  Google Scholar 

  9. A. K. Sachdev, K. Kulkarni, Z. Z. Fang, R. Yang, and V. Girshov, JOM 64, 553 (2012).

    Article  CAS  Google Scholar 

  10. B. J. Choi and Y. J. Kim, Met. Mater. Int. 19, 439 (2013).

    Article  CAS  Google Scholar 

  11. S. Ranganath, J. Mater. Sci. 32, 1 (1997).

    CAS  Google Scholar 

  12. S. Y. Sung and Y. J. Kim, Mater. Trans. 46, 726 (2005).

    Article  CAS  Google Scholar 

  13. S. C. Tjong and Z. Y. Ma, Mater. Sci. Eng. 29, 49 (2000).

    Article  Google Scholar 

  14. B. J. Choi, S. Lee, and Y. J. Kim, Korean J. Met. Mater. 49, 577 (2011).

    Article  CAS  Google Scholar 

  15. Y. B. Chun and S. K. Hwang, Acta Mater. 56, 369 (2008).

    Article  CAS  Google Scholar 

  16. B. J. Choi and Y. J. Kim, Mater. Trans. 52, 1926 (2011).

    Article  CAS  Google Scholar 

  17. B. J. Choi and Y. J. Kim, Korean. J. Met. Mater. 48, 780 (2010).

    CAS  Google Scholar 

  18. H. D. Duschanek, P. Rogl, and H. L. Lukas, J. Phase Equil. 16, 46 (1995).

    Article  CAS  Google Scholar 

  19. X. Zhang, W. Lu, D. Zhang, and R. Wu, Scripta Mater. 41, 39 (1999).

    Article  CAS  Google Scholar 

  20. I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, J. Mater. Sci. 26, 1137 (1991).

    Article  CAS  Google Scholar 

  21. F. Tang, I. E. Anderson, T. G. Herold, and H. Prask, Mater. Sci. Eng. A 383, 362 (2004).

    Article  Google Scholar 

  22. R. J. Arsenault and N. Shi, Mater. Sci. Eng. 81, 175 (1986).

    Article  CAS  Google Scholar 

  23. Z. Zhang and D. L. Chen, Script. Mater. 54, 1321 (2006).

    Article  CAS  Google Scholar 

  24. M. Taya and R. J. Arsenault, Script. Metall. 21, 349 (1987).

    Article  CAS  Google Scholar 

  25. V. C. Nardone and K. M. Prewo, Script. Metall. 20, 43 (1986).

    Article  CAS  Google Scholar 

  26. W. Lu, D. Zhang, X. Zhang, Y. Bian, R. Wu, T. Sakata, and H. Mori, J. Mater. Sci. 36, 3707 (2001).

    Article  CAS  Google Scholar 

  27. T. W. Clyne, P. J. Withers, An Introduction to Metal Matrix Composites, p.85, Cambridge University Press, UK (1993).

    Book  Google Scholar 

  28. M. J. Donachie, Jr, Titanium — A Technical Guide, 2nd eds, p.144, ASM International, US (2000).

    Google Scholar 

  29. N. Chawla and K. K. Chawla, Metal Matrix Composites, p.223, Springer, US (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Jig Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, BJ., Kim, YJ. In-Situ (TiB+TiC) particulate reinforced titanium matrix composites: Effect of B4C size and content. Met. Mater. Int. 19, 1301–1307 (2013). https://doi.org/10.1007/s12540-013-6024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-6024-9

Key words

Navigation